Skip to main content
Log in

Discriminating of ATP competitive Src kinase inhibitors and decoys using self-organizing map and support vector machine

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A data set containing 686 Src kinase inhibitors and 1,941 Src kinase non-binding decoys was collected and used to build two classification models to distinguish inhibitors from decoys. The data set was randomly split into a training set (458 inhibitors and 972 decoys) and a test set (228 inhibitors and 969 decoys). Each molecule was represented by five global molecular descriptors and 18 2D property autocorrelation descriptors calculated using the program ADRIANA.Code. Two machine learning methods, a Kohonen’s self-organizing map (SOM) and a support vector machine (SVM), were utilized for the training and classification. For the test set, classification accuracy (ACC) of 99.92% and Matthews correlation coefficient (MCC) of 0.98 were achieved for the SOM model; ACC of 99.33% and MCC of 0.98 were obtained for the SVM model. Some molecular properties, such as molecular weight, number of atoms in a molecule, hydrogen bond properties, polarizabilities, electronegativities, and hydrophobicities, were found to be important for the inhibition of Src kinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jr RR (2004) Src protein–tyrosine kinase structure and regulation. Biochem Biophys Res Comm 324: 1155–1164. doi:10.1016/j.bbrc.2004.09.171

    Article  Google Scholar 

  2. Robinson DR, Wu Y, Lin S (2000) The protein tyrosine kinase family of the human genome. Oncogene 19: 5548–5557. doi:10.1038/sj.onc.1203957

    Article  PubMed  CAS  Google Scholar 

  3. Zhang N, Wua B, Boschelli DH, Golas JM, Boschelli F (2009) 4-Anilino-7-pyridyl-3-quinolinecarbonitriles as Src kinase inhibitors. Bioorg Med Chem Lett 19: 5071–5074. doi:10.1016/j.bmcl.2009.07.043

    Article  PubMed  CAS  Google Scholar 

  4. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucl Acids Res 35: D198–D201. doi:10.1093/nar/gkl999

    Article  PubMed  CAS  Google Scholar 

  5. Wang Y, Metcalf CA, Shakespeare W, Sundaramoorthi R, Keenan TP, Bohacek RS, Schravendijk MR, Violette SM, Narula SS, Dalgarno DC, Haraldson C, Keats J, Liou S, Mani U, Pradeepan S, Ram M, Adams S, Weigele M, Sawyer TK (2003) Bone-Targeted 2,6,9-Trisubstituted purines: novel inhibitors of Src tyrosine kinase for the treatment of bone diseases. Bioorg Med Chem Lett 13: 3067–3070. doi:10.1016/S0960-894X(03)00648-6

    Article  PubMed  CAS  Google Scholar 

  6. Blake RA, Broome MA, Liu X, Wu J, Gishizky M, Sun L, Courtneidge SA (2000) SU6656, a selective Src family kinase inhibitor, used to probe growth factor signaling. Mol Cell Biol 20: 9018–9027. doi:10.1128/MCB.20.23.9018-9027.2000

    Article  PubMed  CAS  Google Scholar 

  7. Ple PA, Green TP, Hennequin LF, Curwen J, Fennell M, Allen J, Vander Brempt CL, Costello G (2004) Discovery of a new class of anilinoquinazoline inhibitors with high affinity and specificity for the tyrosine kinase domain of c-Src. J Med Chem 47: 871–887. doi:10.1021/jm030317k

    Article  PubMed  CAS  Google Scholar 

  8. Missbach M, Jeschke M, Feyen J, Muller K, Glatt M, Green J, Susa M (1999) A novel inhibitor of the tyrosine kinase Src suppresses phosphorylation of its major cellular substrates and reduces bone resorption in vitro and in rodent models in vivo. Bone 24: 437–449. doi:10.1016/S8756-3282(99)00020-4

    Article  PubMed  CAS  Google Scholar 

  9. Kraker AJ, Hartl BG, Amar AM, Barvian MR, Showalter HDH, Moore CW (2000) Biochemical and cellular effects of c-Src kinase-selective pyrido[2,3-d]pyrimidine tyrosine kinase inhibitors. Biochem Pharmacol 60: 885–898. doi:10.1016/S0006-2952(00)00405-6

    Article  PubMed  CAS  Google Scholar 

  10. Boschelli DH, Powell D, Golas JM, Boschelli F (2003) Inhibition of Src kinase activity by 4-anilino-5,10-dihydropyrimido[4,5-b]-quinolines. Bioorg Med Chem Lett 13: 2977–2980. doi:10.1016/S0960-894X(03)00628-0

    Article  PubMed  CAS  Google Scholar 

  11. Saad F, Lipton A (2010) SRC kinase inhibition: targeting bone metastases and tumor growth in prostate and breast cancer. Cancer Treat Rev 36: 177–184. doi:10.1016/j.ctrv.2009.11.005

    Article  PubMed  CAS  Google Scholar 

  12. Zhu J, Lu W, Liu L, Gu T, Niu B (2009) Classification of Src kinase inhibitors based on support vector machine. QSAR Comb Sci 28: 719–727. doi:10.1002/qsar.200860105

    Article  CAS  Google Scholar 

  13. Tintori C, Magnani M, Schenone S, Botta M (2009) Docking, 3D-QSAR studies and in silico ADME prediction on c-Src tyrosine kinase inhibitors. Eur J Med Chem 44: 990–1000. doi:10.1016/j.ejmech.2008.07.002

    Article  PubMed  CAS  Google Scholar 

  14. Vidal M, Gigoux V, Garbay C (2001) SH2 and SH3 domains as targets for anti-proliferative agents. Crit Rev Oncol Hematol 40: 175–186. doi:10.1016/S1040-8428(01)00142-1

    Article  PubMed  CAS  Google Scholar 

  15. Altmann E, Missbach M, Green J, Susa M, Wagenknecht H, Widler L (2001) 7-Pyrrolidinyl- and 7-Piperidinyl-5-aryl-pyrrolo[2,3-d]-pyrimidines—potent inhibitors of the tyrosine kinase c-Src. Bioorg Med Chem Lett 11: 853–856. doi:10.1016/S0960-894X(01)00080-4

    Article  PubMed  CAS  Google Scholar 

  16. Boschelli DH, Wang YD, Johnson S, Wu B, Ye F, Sosa ACB, Golas JM, Boschelli F (2004) 7-Alkoxy-4-phenylamino-3-quinolinecar-bonitriles as dual inhibitors of Src and Abl kinases. J Med Chem 47: 1599–1601. doi:10.1021/jm0499458

    Article  PubMed  CAS  Google Scholar 

  17. Guan H, Laird AD, Blake RA, Tanga C, Liang C (2004) Design and synthesis of aminopropyl tetrahydroindole-based indolin-2-ones as selective and potent inhibitors of Src and Yes tyrosine kinase. Bioorg Med Chem Lett 14: 187–190. doi:10.1016/j.bmcl.2003.09.069

    Article  PubMed  CAS  Google Scholar 

  18. Boschelli DH, Sosa ACB, Golas JM, Boschelli F (2007) Inhibition of Src kinase activity by 7-ethynyl-4-phenylamino-3-quinolinecarbonitriles: identification of SKS-927. Bioorg Med Chem Lett 17: 1358–1361. doi:10.1016/j.bmcl.2006.11.077

    Article  PubMed  CAS  Google Scholar 

  19. Boschelli DH, Wang D, Wang Y, Wu B, Honores EE, Sosa ACB, Chaudhary I, Golas J, Lucas J, Boschelli F (2010) Optimization of 7-alkene-3-quinolinecarbonitriles as Src kinase inhibitors. Bioorg Med Chem Lett 20: 2924–2927. doi:10.1016/j.bmcl.2010.03.025

    Article  PubMed  CAS  Google Scholar 

  20. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49: 6789–6801. doi:10.1021/jm0608356

    Article  PubMed  CAS  Google Scholar 

  21. ADRIANA.Code. Molecular Networks GmbH, Erlangen. http://www.molecular-networks.com/. Accessed April 2012

  22. Gasteiger J (2006) Of molecules and humans. J Med Chem 49: 6429–6434. doi:10.1021/jm0608964

    Article  PubMed  CAS  Google Scholar 

  23. Wagener M, Sadowski J, Gasteiger J (1995) Autocorrelation of Molecular surface properties for modeling corticosteroid binding globulin and cytosolic Ah receptor activity by neural networks. J Am Chem Soc 117: 7769–7775. doi:10.1021/ja00134a023

    Article  CAS  Google Scholar 

  24. Bouckaert RR, Frank E, Hall MA, Holmes G, Pfahringer B, Reutemann P, Witten IH (2010) WEKA-experiences with a Java open-source project. J Mach Learn Res 11: 2533–2541

    Google Scholar 

  25. Vapnik V, Chapelle O (2000) Bounds on error expectation for support vector machines. Neural Comput 12: 2013–2036. doi:10.1162/089976600300015042

    Article  PubMed  CAS  Google Scholar 

  26. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43: 59–69. doi:10.1007/BF00337288

    Article  Google Scholar 

  27. Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design, 2nd ed. Wiley: Weinheim

    Google Scholar 

  28. SONNIA, version 4.2. Molecular Networks GmbH, Erlangen. http://www.molecular-networks.com. Accessed April 2012

  29. Boser BE, Guyon I, Vapnik V (1992) A training algorithm for optimal margin classifiers. In: Haussler D (ed) Fifth annual workshop on computational learning theory. ACM, New York, pp 144–152

  30. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20: 273–297. doi:10.1007/BF00994018

    Google Scholar 

  31. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2: 121–167. doi:10.1023/A:1009715923555

    Article  Google Scholar 

  32. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machine. http://www.csie.ntu.edu.tw/~cjlin/libsvm. Accessed April 2012

  33. MOE (The Molecular Operating Environment), version 2009.2010. Chemical Computing Group Inc., Montreal

  34. Kryger G, Harel M, Giles K, Toker L, Velan B, Lazar A, Kronman C, Barak D, Ariel N, Shafferman A, Silman I, Sussman JL (2000) Structures of recombinant native and E202Q mutant human acetylcholinesterase c omplexed with the snake-venom toxin fasciculin-II. Acta Crystallogr D 56: 1385–1394. doi:10.1107/S0907444900010659

    Article  PubMed  CAS  Google Scholar 

  35. Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405: 442–451

    Article  PubMed  CAS  Google Scholar 

  36. Hennequin LF, Allen J, Breed J, Curwen J, Fennell M, Green TP, Brempt CL, Morgentin R, Norman RA, Olivier A, Otterbein L, Plé PA, Warin N, Costello G (2006) N-(5-Chloro-1,3-benzodioxol −4-yl)-7-[2- (4-methylpiperazin-1-yl) ethoxy] - 5-(tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a Novel, Highly Selective, Orally Available, Dual-Specific c-Src/Abl Kinase Inhibitor. J Med Chem 49: 6465–6488. doi:10.1021/jm060434q

    Article  PubMed  CAS  Google Scholar 

  37. Noronha G, Barrett K, Cao J, Dneprovskaia E, Fine R, Gong X, Gritzen C, Hood J, Kang X, Klebansky B, Li G, Liao W, Lohse D, Mak CC, McPherson A, Palanki MSS, Pathak VP, Renick J, Soll R, Splittgerber U, Wrasidlo W, Zeng B, Zhao N, Zhou Y (2006) Discovery and preliminary structure–activity relationship studies of novel benzotriazine based compounds as Src inhibitors. Bioorg Med Chem Lett 16: 5546–5550. doi:10.1016/j.bmcl.2006.08.035

    Article  PubMed  CAS  Google Scholar 

  38. Sun M, Zheng Y, Wei H, Chen J, Cai J, Ji M (2009) Enhanced replacement method-based quantitative structure–activity relationship modeling and support vector machine classification of 4-anilino-3-quinolinecarbonitriles as Src kinase inhibitors. QSAR Comb Sci 28: 312–324. doi:10.1002/qsar.200860107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aixia Yan.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (XLS 346 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, A., Hu, X., Wang, K. et al. Discriminating of ATP competitive Src kinase inhibitors and decoys using self-organizing map and support vector machine. Mol Divers 17, 75–83 (2013). https://doi.org/10.1007/s11030-012-9411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-012-9411-0

Keywords

Navigation