Skip to main content
Log in

Synthesis, pharmacological evaluation and conformational investigation of endomorphin-2 hybrid analogues

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

This study reports on new pharmacologically active endomorphin-2 analogues, incorporating β 2-hPhe, β 3-hPhe and β 3-hTic unnatural amino acids in the place of the Phe3–Phe4residues. Such α, β-hybrid analogues were designed to exploit the great potential of β-amino acids in generating conformational variation at the key positions 3 and 4, with the aim of evaluating the effect on the opioid binding affinity. Ligand-stimulated binding assays indicated that some analogues retained a significant affinity, especially for the δ receptor. 1H NMR and molecular modelling suggested the predominance of bent structures for all compounds. The molecular docking with the μ-opioid receptor model was also performed, highlighting a common binding mode for active compounds and helping to rationalize the observed structure–activity data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seebach D, Gardiner J (2008) β-Peptidic peptidomimetics. Acc Chem Res 41: 1366–1375. doi:10.1021/ar700263g

    Article  PubMed  CAS  Google Scholar 

  2. Wu YD, Han W, Wang DP, Gao Y, Zhao YL (2008) Theoretical analysis of secondary structures of β-peptides. Acc Chem Res 41: 1418–1427. doi:10.1021/ar800070b

    Article  PubMed  CAS  Google Scholar 

  3. Cheng RP, Gellman SH, DeGrado WF (2001) β-Peptides: from structure to function. Chem Rev 101: 3219–3232. doi:10.1021/cr000045i

    Article  PubMed  CAS  Google Scholar 

  4. Horne WS, Gellman SH (2008) Foldamers with heterogeneous backbones. Acc Chem Res 41: 1399–1408. doi:10.1021/ar800009n

    Article  PubMed  CAS  Google Scholar 

  5. Vasudev PG, Chatterjee S, Shamala N, Balaram P (2011) Structural chemistry of peptides containing backbone expanded amino acid residues: conformational features of β, γ, and hybrid peptides. Chem Rev 111: 657–687. doi:10.1021/cr100100x

    Article  PubMed  CAS  Google Scholar 

  6. Sacchetti A, Silvani A, Lesma G, Pilati T (2011) Phe-Ala-based diazaspirocyclic lactam as nucleator of type II′ β-turn. J Org Chem 76: 833–839. doi:10.1021/jo1019927

    Article  PubMed  CAS  Google Scholar 

  7. Lesma G, Landoni N, Pilati T, Sacchetti A, Silvani A (2009) Tetrahydroisoquinoline-based spirocyclic lactam as a type II′ β-turn inducing peptide mimetic. J Org Chem 74: 8098–8105. doi:10.1021/jo901480d

    Article  PubMed  CAS  Google Scholar 

  8. Lesma G, Landoni N, Sacchetti A, Silvani A (2007) Pyrroloisoquinoline-based tetrapeptide analogues mimicking reverse-turn secondary structures. J Org Chem 72: 9765–9768. doi:10.1021/jo701581j

    Article  PubMed  Google Scholar 

  9. Lesma G, Landoni N, Sacchetti A, Silvani A (2010) The spiropiperidine-3,3′-oxindole scaffold: a type II β-turn peptide isostere. Tetrahedron 66: 4474–4478. doi:10.1016/j.tet.2010.04.077

    Article  CAS  Google Scholar 

  10. Urman S, Gaus K, Yang Y, Strijowski U, Sewald N, De Pol S, Reiser O (2007) The constrained amino acid β-Acc confers potency and selectivity to integrin ligands. Angew Chem Int Edn 46: 3976–3978. doi:10.1002/anie.200605248

    Article  CAS  Google Scholar 

  11. Tyndall JDA, Pfeiffer B, Abbenante G, Fairlie DP (2005) Over one hundred peptide-activated G protein-coupled receptors recognize ligands with turn structure. Chem Rev 105: 793–826. doi:10.1021/cr040689g

    Article  PubMed  CAS  Google Scholar 

  12. Blakeney JS, Reid RC, Le GT, Fairlie DP (2007) Nonpeptidic ligands for peptide-activated G protein-coupled receptors. Chem Rev 107: 2960–3041. doi:10.1021/cr050984g

    Article  PubMed  CAS  Google Scholar 

  13. Horvath G (2000) Endomorphin-1 and endomorphin-2: phar-macology of the selective endogenous μ-opioid receptor agonists. Pharmacol Therapeutics 88:437–463. doi:10.1016/S0163-7258(00)00100-5

    Google Scholar 

  14. Zadina JE, Hackler L, Ge LJ, Kastin AJ (1997) A potent and selective endogenous agonist for the μ-opiate receptor. Nature 386: 499–502. doi:10.1038/386499a0

    Article  PubMed  CAS  Google Scholar 

  15. Fichna J, Janecka A, Costentin J, Do Rego JC (2007) The endomorphin system and its evolving neurophysiological role. Pharmacol Rev 59: 88–123. doi:10.1124/pr.59.1.3

    Article  PubMed  CAS  Google Scholar 

  16. Janecka A, Staniszewska R, Fichna J (2007) Endomorphin Analogs. Curr Med Chem 14: 3201–3208

    Article  PubMed  CAS  Google Scholar 

  17. Leitgeb B (2007) Structural investigation of endomorphins by experimental and theoretical methods: hunting for the bioactive conformation. Chem Biodivers 4: 2703–2724. doi:10.1002/cbdv.200790221

    Article  PubMed  CAS  Google Scholar 

  18. Eguchi M (2004) Recent advances in selective opioid receptor agonists and antagonists. Med Res Rev 24: 182–212. doi:10.1002/med.10059

    Article  PubMed  CAS  Google Scholar 

  19. Gentilucci L, Tolomelli A (2004) Recent advances in the investigation of the bioactive conformation of peptides active at the micro-opioid receptor. conformational analysis of endomorphins. Curr Top Med Chem 4: 105–121

    Article  PubMed  CAS  Google Scholar 

  20. Gentilucci L, Tolomelli A, De Marco R, Spampinato S, Bedini A, Artali R (2011) The inverse type II β-turn on d-Trp-Phe, a pharmacophoric motif for MOR agonists. ChemMedChem 6: 1640–1653. doi:10.1002/cmdc.201100169

    Article  PubMed  CAS  Google Scholar 

  21. Torino D, Mollica A, Pinnen F, Feliciani F, Lucente G, Fabrizi G, Portalone G, Davis P, Lai J, Ma SW, Porreca F, Hruby VJ (2010) Synthesis and evaluation of new endomorphin-2 analogues containing (Z)-α,β-didehydrophenylalanine (ΔZPhe) Residues. J Med Chem 53: 4550–4554. doi:10.1021/jm1001343

    Article  PubMed  CAS  Google Scholar 

  22. Perlikowska R, Gach K, Fichna J, Tóth G, Walkowiak B, do-Rego JC, Janecka A (2009) Biological activity of endomorphin and [Dmt1]endomorphin analogs with six-membered proline surrogates in position 2. Bioorg Med Chem 17: 3789–3794. doi:10.1016/j.bmc.2009.04.046

    Article  PubMed  CAS  Google Scholar 

  23. Ballet S, Feytens D, De Wachter R, De Vlaemink M, Marczak ED, Salvadori S, de Graaf C, Rognan D, Negri L, Lattanzi R, Lazarus LH, Tourwé D, Balboni G (2009) Conformationally constrained opioid ligands: The Dmt-Aba and Dmt-Aia versus Dmt-Tic scaffold. Bioorg Med Chem Lett 19: 433–437. doi:10.1016/j.bmcl.2008.11.051

    Article  PubMed  CAS  Google Scholar 

  24. Balboni G, Fiorini S, Baldisserotto A, Trapella C, Sasaki Y, Ambo A, Marczak ED, Lazarus LH, Salvadori S (2008) Further studies on lead compounds containing the opioid pharmacophore Dmt-Tic. J Med Chem 51: 5109–5117. doi:10.1021/jm800587e

    Article  PubMed  CAS  Google Scholar 

  25. Tömböly C, Ballet S, Feytens D, Kövér KE, Borics A, Lovas S, Al-Khrasani M, Fürst Z, Tóth G, Benyhe S, Tourwé D (2008) Endomorphin-2 with a β-turn backbone constraint retains the potent μ-opioid receptor agonist properties. J Med Chem 51: 173–177. doi:10.1021/jm7010222

    Article  PubMed  Google Scholar 

  26. Ballet S, Salvadori S, Trapella C, Bryant SD, Jinsmaa Y, Lazarus LH, Negri L, Giannini E, Lattanzi R, Tourwé D, Balboni G (2006) New 2′,6′-Dimethyl-l-tyrosine (Dmt) opioid peptidomimetics based on the Aba-Gly Scaffold. Development of unique μ-opioid receptor ligands. J Med Chem 49: 3990–3993. doi:10.1021/jm0603264

    Article  PubMed  CAS  Google Scholar 

  27. Tömböly C, Kövér KE, Péter A, Tourwé D, Biyashev D, Benyhe S, Borsodi A, Al-khrasani M, Ronay AZ, Tóth G (2004) Structure–activity study on the phe side chain arrangement of endomorphins using conformationally constrained analogues. J Med Chem 47: 735–743. doi:10.1021/jm0310028

    Article  PubMed  Google Scholar 

  28. Shao X, Gao Y, Zhu C, Liu X, Yao J, Cui Y, Wang R (2007) Conformational analysis of endomorphin-2 analogs with phenylalanine mimics by NMR and molecular modeling. Bioorg Med Chem 15: 3539–3547. doi:10.1016/j.bmc.2007.02.050

    Article  PubMed  CAS  Google Scholar 

  29. Leitgeb B, Otvos F, Toth G (2003) Conformational analysis of endomorphin-2 by molecular dynamics methods. Biopolymers 68: 497–511

    Article  PubMed  CAS  Google Scholar 

  30. Leitgeb B, Szekeres A, Tóth G (2003) Conformational analysis of endomorphin-1 by molecular dynamics methods. Biopolymers. doi:10.1034/j.1

  31. Yu Y, Shao X, Cui Y, Liu H, Wang C, Fan Y, Liu J, Dong S, Cui Y, Wang R (2007) Structure–activity study on the spatial arrangement of the third aromatic ring of endomorphins 1 and 2 using an atypical constrained C terminus. ChemMedChem 2: 309–317. doi:10.1002/cmdc.200600274

    Article  PubMed  CAS  Google Scholar 

  32. Borics A, Tóth G (2010) Structural comparison of μ-opioid receptor selective peptides confirmed four parameters of bioactivity. J Mol Graph Model 28: 495–505. doi:10.1016/j.jmgm.2009.11.006

    Article  PubMed  CAS  Google Scholar 

  33. Caputo R, Cassano E, Longobardo L, Palumbo G (1995) Synthesis of enantiopure N- and C-protected homo-β-amino acids by direct homologation of α-amino acids. Tetrahedron 51: 12337–12350. doi:10.1016/0040-4020(95)00778-7

    Article  CAS  Google Scholar 

  34. Lee HS, Park JS, Kim BM, Gellman SH (2003) Efficient synthesis of enantiomerically pure β2-amino acids via chiral isoxazolidinones. J Org Chem 68: 1575–1578. doi:10.1021/jo026738b

    Article  PubMed  CAS  Google Scholar 

  35. Tessier A, Lahmar N, Pytkowicz J, Brigaud T (2008) Highly diastereoselective synthetic route to enantiopure β2-amino acids and γ-amino alcohols using a fluorinated oxazolidine (Fox) as chiral auxiliary. J Org Chem 73: 3970–3973. doi:10.1021/jo800562x

    Article  PubMed  CAS  Google Scholar 

  36. Albrizio S, Carotenuto A, Fattorusso C, Moroder L, Picone D, Temussi PA, D’Ursi A (2002) Environmental mimic of receptor interaction: conformational analysis of CCK-15 in solution. J Med Chem 45: 762–769. doi:10.1021/jm0109457

    Article  PubMed  CAS  Google Scholar 

  37. Shao X, Gao Y, Zhu C, Liu X, Yao J, Cui Y, Wang R (2007) Conformational analysis of endomorphin-2 analogs with phenylalanine mimics by NMR and molecular modeling. Bioorg Med Chem 15: 3539–3547. doi:10.1016/j.bmc.2007.02.050

    Article  PubMed  CAS  Google Scholar 

  38. Grathwohl C, Wüthrich K (1981) NMR studies of the rates of proline cis–trans isomerization in oligopeptides. Biopolymers 20: 2623–2633. doi:10.1002/bip.1981.360201209

    Article  CAS  Google Scholar 

  39. Keresztes A, Szűcs M, Borics A, Kövér KE, Forró E, Fülöp F, Tömböly C, Péter A, Páhi A, Fábián G, Murányi M, Tóth G (2008) New endomorphin analogues containing alicyclic β-amino acids: influence on bioactive conformation and pharmacological profile. J Med Chem 51: 4270–4279. doi:10.1021/jm800223t

    Article  PubMed  CAS  Google Scholar 

  40. Mallareddy JR, Borics A, Keresztes A, Kövér KE, Tourwé D, Tóth G (2011) Design, synthesis, pharmacological evaluation, and structure–activity study of novel endomorphin analogues with multiple structural modifications. J Med Chem 54: 1462–1472. doi:10.1021/jm101515v

    Article  PubMed  CAS  Google Scholar 

  41. Wilczyńska D, Kosson P, Kwasiborska M, Ejchart A, Olma A (2009) Synthesis and receptor binding of opioid peptide analogues containing β 3-h-amino acids. J Pept Sci 15: 777– 782

    Article  PubMed  Google Scholar 

  42. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485: 321–326. doi:10.1038/nature10954

    Article  PubMed  CAS  Google Scholar 

  43. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK (2012) Structure of the δ-opioid receptor bound to naltrindole. Nature 485: 400–404. doi:10.1038/nature11111

    Article  PubMed  CAS  Google Scholar 

  44. Mosberg HI, Fowler CB (2002) Development and validation of opioid ligand–receptor interaction models: the structural basis of μ vs δ selectivity. J Pept Res 60: 329–335

    Article  PubMed  CAS  Google Scholar 

  45. Gentilucci L, Tolomelli A, De Marco R, Artali R (2012) Molecular docking of opiates and opioid peptides, a tool for the design of selective agonists and antagonists, and for the investigation of atypical ligand–receptor interactions. Curr Med Chem 19: 1587–1601. doi:10.2174/092986712799945030

    Article  PubMed  CAS  Google Scholar 

  46. Liu X, Kai M, Jin L, Wang R (2009) Molecular modeling studies to predict the possible binding modes of endomorphin analogs in μ opioid receptor. Bioorg Med Chem Lett. doi:10.1016/j.bmcl.2009.07.121

  47. Liu X, Kai M, Jin L, Wang R (2009) Computational study of the heterodimerization between μ and δ receptors. J Computer-Aid Mol Des 23: 321–332. doi:10.1007/s10822-009-9262-7

    Article  CAS  Google Scholar 

  48. Urban JD, Clarke WP, Von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320: 1–13. doi:10.1124/jpet.106.104463

    Article  PubMed  CAS  Google Scholar 

  49. Nevin ST, Kabasakal L, Otvös F, Tóth G, Borsodi A (1994) Binding characteristics of the novel highly selective delta agonist, [3H]Ile5,6deltorphin II. Neuropeptides 26: 261–265. doi:10.1016/0143-4179(94)90080-9

    Article  PubMed  CAS  Google Scholar 

  50. Tóth G, Ioja E, Tömböly C, Ballet S, Tourwé D, Péter A, Martinek T, Chung NN, Schiller PW, Benyhe S, Borsodi A (2006) β-Methyl substitution of cyclohexylalanine in dmt-tic-cha-phe peptides results in highly potent δ opioid antagonists. J Med Chem 50: 328–333. doi:10.1021/jm060721u

    Article  Google Scholar 

  51. Spartan ’08, Wavefunction, Inc. Irvine, CA

  52. Maestro, version 9.0 (2011) Schrödinger, LLC, New York

  53. Glide, version 5.5 (2011) Schrödinger, LLC, New York

  54. Park M, Gao C, Stern HA (2011) Estimating binding affinities by docking/scoring methods using variable protonation states. Proteins 79: 304–314

    Article  PubMed  CAS  Google Scholar 

  55. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49: 6177–6196. doi:10.1021/jm051256o

    Article  PubMed  CAS  Google Scholar 

  56. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shaw DE, Shelley M, Perry JK, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47: 1739–1749. doi:10.1021/jm0306430

    Article  PubMed  CAS  Google Scholar 

  57. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. enrichment factors in database screening. J Med Chem 47: 1750–1759. doi:10.1021/jm030644s

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alessandro Sacchetti, Gianfranco Balboni or Alessandra Silvani.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 3346 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesma, G., Salvadori, S., Airaghi, F. et al. Synthesis, pharmacological evaluation and conformational investigation of endomorphin-2 hybrid analogues. Mol Divers 17, 19–31 (2013). https://doi.org/10.1007/s11030-012-9399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-012-9399-5

Keywords

Navigation