Skip to main content
Log in

Applications of ortho-phenylisonitrile and ortho-N-Boc aniline for the two-step preparation of novel bis-heterocyclic chemotypes

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Concise routes to five pharmacologically relevant bis-heterocyclic scaffolds are described. Significant molecular complexity is generated in a mere two synthetic operations enabling access to each scaffold. Routes are often improved by microwave irradiation and all utilize isocyanide-based multi-component reaction methods to incorporate the required diversity elements. Common reagents in all initial condensation reactions include 2-(N-Boc-amino)-phenyl-isocyanide 1, mono-Boc-phenylenediamine 2 and ethyl glyoxalate 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Mavrova ATS, Anichina KK, Vuchev DI (2005) Synthesis and antitrichinellosis activity of some 2-substituted-[1, 3]thiazolo[3, 2-a]benzimidazol-3(2H)-ones. Bioorg Med Chem 13: 5550–5559. doi:10.1016/j.bmc.2005.06.046

    Article  PubMed  CAS  Google Scholar 

  2. Göker H, Kus C, Boykin DW, Yildiz S, Altanlar N (2002) Synthesis of some new 2-substituted-phenyl-1H-benzimidazole-5-carbonitriles and their potent activity against Candida species. Bioorg Med Chem 10: 2589–2596. doi:10.1016/S0968-0896(02)00103-7

    Article  PubMed  Google Scholar 

  3. Richards ML, Lio SC, Sinha A, Tieu KK, Sircar JC (2004) Novel 2-(substituted phenyl)benzimidazole derivatives with potent activity against IgE, cytokines, and CD23 for the treatment of allergy and asthma. J Med Chem 47: 6451–6454. doi:10.1021/jm049288j

    Article  PubMed  CAS  Google Scholar 

  4. Göker H, Ozden S, Yildiz S, Boykin DW (2005) Synthesis and potent antibacterial activity against MRSA of some novel 1,2-disubstituted-1H-benzimidazole-N-alkylated-5-carboxamidines. Eur J Med Chem 40: 1062–1069. doi:10.1016/j.ejmech.2005.05.002

    Article  PubMed  Google Scholar 

  5. Prichard MN, Frederick SL, Daily S, Borysko KZ, Townsend LB, Drach JC, Kern ER (2011) Benzimidazole analogs inhibit human herpesvirus 6. Antimicrob Agents Chemother 55: 2442–2445. doi:10.1128/AAC.01523-10

    Article  PubMed  CAS  Google Scholar 

  6. Li Y, Tan C, Gao C, Zhang C, Luan X, Chen X, Liu H, Chen Y, Jiang Y (2011) Discovery of benzimidazole derivatives as novel multi-target EGFR, VEGFR-2 and PDGFR kinase inhibitors. Bioorg Med Chem 19: 4529–4535. doi:10.1016/j.bmc.2011.06.022

    Article  PubMed  CAS  Google Scholar 

  7. Li X, Yang KH, Li WL, Xu WF (2006) Recent advances in the research of quinoxalinone derivatives. Drug Future 31: 979–989. doi:10.1358/dof.2006.031.11.1037128

    Article  CAS  Google Scholar 

  8. Sanna P, Carta A, Loriga M, Zanetti S, Sechi L (1999) Synthesis of 3,6,7-substituted-quinoxalin-2-ones for evaluation of antimicrobial and anticancer activity. Part 2. IL Farmaco 54: 161–168. doi:10.1016/S0014-827X(99)00010-5

    Article  PubMed  CAS  Google Scholar 

  9. Sanna P, Carta A, Loriga M, Zanetti S, Sechi L (1999) Preparation and biological evaluation of 6/7-trifluoromethyl(nitro)-6,7-difluoro-3-alkyl (aryl)-substituted-quinoxalin-2-ones. Part 3. IL Farmaco 54: 169–177. doi:10.1016/S0014-827X(99)00011-7

    Article  PubMed  CAS  Google Scholar 

  10. Ali MMM, Ismail MF, El-Gaby MS, Zahran MA, Ammar YA (2000) Synthesis and antimicrobial activities of some novel quinoxalinone derivatives. Molecules 5: 864–873. doi:10.3390/50600864

    Article  CAS  Google Scholar 

  11. El-Sabbagh OI, El-Sadek ME, Lashine SM, Yassin SHS, El-Nabtity M (2009) Synthesis of new 2(1H)-quinoxalinone derivatives for antimicrobial and antiinflammatory evaluation. Med Chem Res 18: 782–797. doi:10.1007/s00044-009-9203-y

    Article  CAS  Google Scholar 

  12. Carta A, Sanna P, Gherardini L, Usai D, Zanetti S (2001) Novel functionalized pyrido[2,3-g]quinoxalinones as antibacterial, antifungal and anticancer agents. IL Farmaco 56: 933–938. doi:10.1016/S0014-827X(01)01161-2

    Article  PubMed  CAS  Google Scholar 

  13. Gupta D, Ghosh NN, Chandra R (2005) Synthesis and pharmacological evaluation of substituted 5-[4-[2-(6,7-dimethyl-1,2,3,4-tetrahydro-2-oxo-4-quinoxalinyl)ethoxy]phenyl]methylene]thiazolidine-2,4-dione derivatives as potent euglycemic and hypolipidemic agents. Bioorg Med Chem Lett 15: 1019–1022. doi:10.1016/j.bmcl.2004.12.041

    Article  PubMed  CAS  Google Scholar 

  14. Patel M, McHugh RJ Jr, Cordova BC, Klabe RM, Erickson-Viitanen S, Trainor GL, Rodgers JD (2000) Synthesis and evaluation of quinoxalinones as HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem Lett 10: 1729–1731. doi:10.1016/S0960-894X(00)00321-8

    Article  PubMed  CAS  Google Scholar 

  15. Carta A, Sanna P, Loriga M, Setzu MG, Colla PL, Loddo R (2002) Synthesis and evaluation for biological activity of 3-alkyl and 3-halogenoalkyl-quinoxalin-2-ones variously substituted. Part 4. IL Farmaco 57: 19–25. doi:10.1016/S0014-827X(01)01153-3

    Article  PubMed  CAS  Google Scholar 

  16. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106: 17–89. doi:10.1021/cr0505728

    Article  PubMed  Google Scholar 

  17. Dömling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39: 3168–3210. doi:10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U

    Article  Google Scholar 

  18. Humphrey GR, Kuethe JT (2006) Practical methodologies for the synthesis of indoles. Chem Rev 106: 2875–2911. doi:10.1021/cr0505270

    Article  PubMed  CAS  Google Scholar 

  19. Hulme C, Gore VJ (2003) “Multi-component reactions: emerging chemistry in drug discovery” ’from xylocain to crixivan’. Curr Med Chem 10: 51–80. doi:10.2174/0929867033368600

    Article  PubMed  CAS  Google Scholar 

  20. Hulme C, Dietrich J (2009) Emerging molecular diversity from the intra-molecular Ugi reaction: iterative efficiency in medicinal chemistry. Mol Divers 13: 195–207. doi:10.1007/s11030-009-9111-6

    Article  PubMed  CAS  Google Scholar 

  21. Sisko J, Mellinger M (2002) Development of a general process for the synthesis of highly substituted imidazoles. Pure Appl Chem 74: 1349–1357. doi:10.1351/pac200274081349

    Article  CAS  Google Scholar 

  22. Dolle RE, La Bourdonnec B, Goodman AJ, Morales GA, Thomas CJ, Zhang W (2009) Comprehensive survey of chemical libraries for drug discovery and chemical biology: 2008. J Comb Chem 11: 739–790. doi:10.1021/cc9000828

    Article  PubMed  CAS  Google Scholar 

  23. Hulme C, Nixey T (2003) Rapid assembly of molecular diversity via exploitation of isocyanide based multi-component reactions. Curr Opin Drug Discov Dev 6: 921–929. doi:10.1002/chin.200413254

    CAS  Google Scholar 

  24. Bräuer S, Almstetter M, Antuch W, Behnke D, Taube R, Furer P, Hess S (2005) Evolutionary chemistry approach toward finding novel inhibitors of the type 2 diabetes target glucose-6-phosphate translocase. J Comb Chem 7: 218–226. doi:10.1021/cc049867+

    Article  PubMed  Google Scholar 

  25. Hulme C, Morrissette M, Volz F, Burns C (1998) The solution phase synthesis of diketopiperazine libraries via the Ugi reaction: Novel application of Armstrong’s convertible isonitrile. Tetrahedron Lett 39: 1113–1116. doi:10.1016/S0040-4039(97)10795-X

    Article  CAS  Google Scholar 

  26. Hulme C, Peng J, Morton G, Salvino JM, Herpin T, Labaudiniere R (1998) Novel safety-catch linker and its application with a Ugi/De-BOC/Cyclization (UDC) strategy to access carboxylic acids, 1,4-benzodiazepines, diketopiperazines, ketopiperazines and dihydroquinoxalinones. Tetrahedron Lett 39: 7227–7230. doi:10.1016/S0040-4039(98)01593-7

    Article  CAS  Google Scholar 

  27. Xu Z, Dietrich J, Shaw AY, Hulme C (2010) Two-step syntheses of fused quinoxaline-benzodiazepines and bis-benzodiazepines. Tetrahedron Lett 51: 4566–4569. doi:10.1016/j.tetlet.2010.06.116

    Article  PubMed  CAS  Google Scholar 

  28. Hulme C, Chappeta S, Griffith C, Lee YS, Dietrich J (2009) An efficient solution phase synthesis of triazadibenzoazulenones: ‘designer isonitrile free’ methodology enabled by microwaves. Tetrahedron Lett 50: 1939–1942. doi:10.1016/j.tetlet.2009.02.099

    Article  CAS  Google Scholar 

  29. Tempest P, Ma V, Thomas S, Hua Z, Kelly MG, Hulme C (2001) Two-step solution-phase synthesis of novel benzimidazoles utilizing a UDC (Ugi/de-Boc/cyclize) strategy. Tetrahedron Lett 42: 4959–4962. doi:10.1016/S0040-4039(01)00919-4

    Article  CAS  Google Scholar 

  30. Tempest P, Pettus L, Gore V, Hulme C (2003) MCC/SNAr methodology. Part 2: Novel three-step solution phase access to libraries of benzodiazepines. Tetrahedron Lett 44: 1947–1950. doi:10.1016/S0040-4039(03)00084-4

    Article  CAS  Google Scholar 

  31. Liu A, Zhou H, Su G, Zhang W, Yan B (2009) Microwave-assisted fluorous synthesis of a 1,4-benzodiazepine-2,5-dione library. J Comb Chem 11: 1083–1093. doi:10.1021/cc900109e

    Article  PubMed  CAS  Google Scholar 

  32. Cuny G, Bois-Choussy M, Zhu J (2004) Palladium- and copper-catalyzed synthesis of medium- and large-sized ring-fused dihydroazaphenanthrenes and 1,4-benzodiazepine-2,5-diones. Control of reaction pathway by metal-switching. J Am Chem Soc 126: 14475–14484. doi:10.1021/ja047472o

    Article  PubMed  CAS  Google Scholar 

  33. Kennedy AL, Fryer AM, Josey JA (2002) A new resin-bound universal isonitrile for the Ugi 4CC reaction: preparation and applications to the synthesis of 2,5-diketopiperazines and 1,4-benzodiazepine-2,5-diones. Org Lett 4: 1167–1170. doi:10.1021/ol0256015

    Article  PubMed  CAS  Google Scholar 

  34. Xu Z, Shaw AY, Dietrich J, Cappelli AP, Nichol G, Hulme C (2012) Facile, novel two-step syntheses of benzimidazoles, bis-benzimidazoles, and bis-benzimidazole-dihydroquinoxalines. Mol Divers 16: 73–79. doi:10.1007/s11030-011-9354-x

    Article  PubMed  CAS  Google Scholar 

  35. Park SJ, Keum G, Kang SB, Koh HY, Kim Y (1998) A facile synthesis of N-carbamoylmethyl-α-aminobutyrolactones by the Ugi multicomponent condensation reaction. Tetrahedron Lett 39: 7109–7112. doi:10.1016/S0040-4039(98)01509-3

    Article  CAS  Google Scholar 

  36. Zhu D, Chen R, Liang H, Li S, Pan L, Chen X (2010) An efficient procedure for the synthesis of morpholin-2-one-3-carboxamide derivatives in good diastereoselectivity by the Ugi reaction. Synlett 6: 897–900. doi:10.1055/s-0029-1219533

    Google Scholar 

  37. Cristau P, Vors JP, Zhu J (2003) Solid-phase synthesis of natural product-like macrocycles by a sequence of Ugi-4CR and SNAr-based cycloetherification. Tetrahedron Lett 44: 5575. doi:10.1016/S0040-4039(03)01378-9

    Article  CAS  Google Scholar 

  38. Shaw AY, Xu Z, Hulme C (2012) Ugi/Robinson–Gabriel reactions directed toward the synthesis of 2,4,5-trisubstituted oxazoles. Tetrahedron Lett 53: 1998–2000. doi:10.1016/j.tetlet.2012.02.030

    Article  CAS  Google Scholar 

  39. Shaw AY, McLaren JA, Nichol GS, Hulme C (2012) Hydrazine-mediated cyclization of Ugi products to synthesize novel 3-hydroxypyrazoles. Tetrahedron Lett 53: 2592–2594. doi:10.1016/j.tetlet.2012.03.033

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Hulme.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 4059 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Shaw, A.Y., Nichol, G.S. et al. Applications of ortho-phenylisonitrile and ortho-N-Boc aniline for the two-step preparation of novel bis-heterocyclic chemotypes. Mol Divers 16, 607–612 (2012). https://doi.org/10.1007/s11030-012-9374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-012-9374-1

Keywords

Navigation