Skip to main content
Log in

Multicomponent synthesis of acylated short peptoids with antifungal activity against plant pathogens

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In this article, we describe the synthesis of a small library of short peptoids composed of four glycine residues and acylated with a fatty acid that showed a remarkable in vitro activity against two fungal plant pathogens. Their straightforward synthesis implied two consecutive Ugi reactions and can be efficiently extended to the construction of highly diverse libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Savary S, Teng PS, Willocquet L, Nutter FW Jr (2006) Quantification and modeling of crop losses: a review of purposes. Annu Rev Phytopathol 44: 89–112. doi:10.1146/annurev.phyto.44.070505.143342

    Article  PubMed  CAS  Google Scholar 

  2. Knight SC, Anthony VM, Brady AM, Greenland AJ, Heaney SP, Murray DC et al (1997) Rationale and perspectives on the development of fungicides. Annu Rev Phytopathol 35: 349–372. doi:10.1146/annurev.phyto.35.1.349

    Article  PubMed  CAS  Google Scholar 

  3. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria. Nat Rev Microbiol 3: 238–250. doi:10.1038/nrmicro1098

    Article  PubMed  CAS  Google Scholar 

  4. Marcos JF, Muñoz A, Pérez-Payá E, Misra S, López-García B (2008) Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 46: 273–330. doi:10.1146/annurev.phyto.121307.094843

    Article  PubMed  CAS  Google Scholar 

  5. Straus SK, Hancock RE (2006) Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta 1758: 1215–1223. doi:10.1016/j.bbamem.2006.02.009

    Article  PubMed  CAS  Google Scholar 

  6. Makovitzki A, Avrahami D, Shai Y (2006) Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci USA 103: 15997–16002. doi:10.1073/pnas.0606129103

    Article  PubMed  CAS  Google Scholar 

  7. Makovitzki A, Viterbo A, Brotman Y, Chet I, Shai Y (2007) Inhibition of fungal and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides. Appl Environ Microbiol 73: 6629–6636. doi:10.1128/AEM.01334-07

    Article  PubMed  CAS  Google Scholar 

  8. Zuckermann RN, Martin EJ, Spellmeyer DC, Stauber GB, Shoemaker KR, Kerr JM, Figliozzi GM, Goff DA, Siani MA, Simon RJ, Banville SC, Brown EG, Wang L, Richter LS, Moss WH (1994) Discovery of nanomolar ligands for 7-transmembrane G-Protein-coupled receptors from a diverse N-(substituted)glycine peptoid library. J Med Chem 37: 2678–2685. doi:10.1021/jm00043a007

    Article  PubMed  CAS  Google Scholar 

  9. Shin SBY, Yoo B, Todaro LJ, Kirshenbaum K (2007) Cyclic peptoids. J Am Chem Soc 129: 3218–3225. doi:10.1021/ja066960o

    Article  PubMed  CAS  Google Scholar 

  10. Masip I, Cortés N, Abad MJ, Guardiola M, Pérez-Payá E, Ferragut J, Ferrer-Montiel A, Messeguer A (2005) Design and synthesis of an optimized positional scanning library of peptoids: identification of novel multidrug resistance reversal agents. Bioorg Med Chem 13: 1923–1929. doi:10.1016/j.bmc.2005.01.024

    Article  PubMed  CAS  Google Scholar 

  11. Zuckermann RN, Kerr JM, Kent SBH, Moos WH (1992) Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J Am Chem Soc 114: 10646–10647. doi:10.1021/ja00052a076

    Article  CAS  Google Scholar 

  12. Chongsiriwatana NP, Miller TM, Wetzler M, Vakulenko S, Karlsson AJ, Palecek SP, Mobashery S, Barron AE (2011) Short alkylated peptoid mimics of antimicrobial lipopeptides. Antimicrob Agents Chemother 55: 417–420. doi:10.1128/AAC.01080-10

    Article  PubMed  CAS  Google Scholar 

  13. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106: 17–89. doi:10.1021/cr0505728

    Article  PubMed  Google Scholar 

  14. Xu P, Zhang T, Wang W, Zou X, Zhang X, Fu Y (2003) Synthesis of PNA monomers and dimers by Ugi four-component reaction. Synthesis 8: 1171–1176. doi:10.1055/s-2003-39391

    Article  Google Scholar 

  15. Rivera DG, Wessjohann LA (2006) Supramolecular compounds from multiple Ugi multicomponent macrocyclizations: peptoid-based cryptands, cages, and cryptophanes. J Am Chem Soc 128: 7122–7123. doi:10.1021/ja060720r

    Article  PubMed  CAS  Google Scholar 

  16. Vercillo OE, AndradeCKZ; Wessjohann LA (2008) Design and synthesis of cyclic RGD pentapeptoids by consecutive Ugi reactions. Org Lett 10: 205–208. doi:10.1021/ol702521g

    Article  PubMed  CAS  Google Scholar 

  17. Henze M, Kreye O, Brauch S, Nitsche C, Naumann K, Wessjohann LA, Westermann B (2010) Photoaffinity-labeled peptoids and depsipeptides by multicomponent reactions. Synthesis 17: 2997–3003. doi:10.1055/s-0030-1258182

    Google Scholar 

  18. Sui Q, Borchardt D, Rabenstein DL (2007) Kinetics and equilibria of cis/trans isomerization of backbone amide bonds in peptoids. J Am Chem Soc 129: 12042–12048. doi:10.1021/ja0740925

    Article  PubMed  CAS  Google Scholar 

  19. Heerma W, Verluis C, de Koster CG, Kruijtzer JAW, Zigrovic I, Liskamp RMJ (1996) Comparing mass spectrometric characteristics of peptides and peptoids. Rapid Commun Mass Spectrom 10: 459–464. doi:10.1002/(SICI)1097-0231(19960315)10:4<459::AID-RCM501>3.0.CO;2-J

    Article  PubMed  CAS  Google Scholar 

  20. Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11: 601. doi:10.1002/bms.1200111109

    Article  PubMed  CAS  Google Scholar 

  21. Jacob MR, Walker LA (2005) Natural products and antifungal drug discovery. In: Ernst EJ, Rogers PD (eds) Methods in molecular medicine vol 118: antifungal agents: methods and protocols 1st ed. Humana Press Inc, Totowa, NJ, pp 83–110

    Google Scholar 

  22. Hadacek F, Greger H (2000) Testing of antifungal natural products: methodologies, comparability and assay choice. Phytochem Anal 11: 137–147. doi:10.1002/(SICI)1099-1565(200005/06)11:3<137::AID-PCA514>3.0.CO;2-I

    Article  CAS  Google Scholar 

  23. Makovitzki A, Viterbo A, Brotman Y, Chet I, Shai Y (2007) Inhibition of fungal and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides. Appl Environ Microbiol 73: 6629–6636. doi:10.1128/AEM.01334-07

    Article  PubMed  CAS  Google Scholar 

  24. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Pept Sci 66: 236–248. doi:10.1002/bip.10260

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier A. Ramírez.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 2364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galetti, M.D., Cirigliano, A.M., Cabrera, G.M. et al. Multicomponent synthesis of acylated short peptoids with antifungal activity against plant pathogens. Mol Divers 16, 113–119 (2012). https://doi.org/10.1007/s11030-011-9334-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-011-9334-1

Keywords

Navigation