Skip to main content
Log in

Topological virtual screening: a way to find new compounds active in ulcerative colitis by inhibiting NF-κB

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Ulcerative colitis and Crohn’s disease are chronic, immune-mediated inflammatory diseases of the gastrointestinal tract. Nuclear Factor Kappa B (NF-κB) is a transcription factor that plays a key role in regulating expression of multiple inflammatory and immune genes. In this study, a Topological Virtual Screening study has been carried out to achieve a model capable of finding new compounds active in ulcerative colitis by inhibiting NF-κB. Different topological indices were used as structural descriptors, and their relation to biological activity was determined using linear discriminant analysis. A topological model consisting of two discriminant functions was built up. The first function focused in the discrimination between NF-κB active and inactive compounds, and the second one in distinguishing between compounds active and inactive on ulcerative colitis. The model was then applied sequentially to a large database of compounds with unknown activity. Twenty-eight of such compounds were predicted to be active and selected for in vitro and in vivo testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NF-κB:

Nuclear factor kappa B

IBD:

Inflammatory bowel disease

UC:

Ulcerative colitis

CD:

Crohn’s disease

TNF-α :

Tumor necrosis factor-α

IL:

Interleukin

LDA:

Linear discriminant analysis

HTS:

High throughput screening

QSAR:

Quantitative structure–activity relationship

DF:

Discriminant function

TI:

Topological indices

PDD:

Pharmacological distribution diagram

References

  1. Venkataranganna M, Rafiq M, Gopumadhavan S, Peer G, Babu U, Mitra S (2007) NCB-02 (standardized curcumin preparation) protects dinitrochlorobenzene-induced colitis through down-regulation of NFkappa-B and iNOS. World J Gastroenterol 13: 1103–1107

    PubMed  CAS  Google Scholar 

  2. Munkholm P (2003) Review article: the incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment Pharmacol Ther 18: 1–5

    Article  PubMed  Google Scholar 

  3. Loftus EV (2004) Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126: 1504–1517. doi:10.1053/j.gastro.2004.01.063

    Article  PubMed  Google Scholar 

  4. Ukil A, Maity S, Das P (2006) Protection from experimental colitis by theaflavin-3, 3’-digallate correlates with inhibition of IKK and NF-κB activation. Br J Pharmacol 149: 121–131. doi:10.1038/sj.bjp.0706847

    Article  PubMed  CAS  Google Scholar 

  5. Lee JY, Kim JS, Kim JM, Kim N, Jung HC, Song IS (2007) Simvastatin inhibits NF-[kappa] B signaling in intestinal epithelial cells and ameliorates acute murine colitis. Int Immunopharmacol 7: 241–248. doi:10.1016/j.intimp.2006.10.013

    Article  PubMed  CAS  Google Scholar 

  6. Karban AS, Okazaki T, Panhuysen CIM et al (2004) Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet 13: 35–45. doi:10.1093/hmg/ddh008

    Article  PubMed  CAS  Google Scholar 

  7. Jian YT, Mai GF, Wang J, Zhang Y, Luo R, Fang Y (2005) Preventive and therapeutic effects of NF-kappaB inhibitor curcumin in rats colitis induced by trinitrobenzene sulfonic acid. World J Gastroenterol 11: 1747–1752

    PubMed  CAS  Google Scholar 

  8. Ríos J, Recio M, Escandell J, Andújar I (2009) Inhibition of transcription factors by plant-derived compounds and their implications in inflammation and cancer. Curr Pharm Des 15: 1212–1237

    Article  PubMed  Google Scholar 

  9. Borm M, Bodegraven A, Mulder C, Kraal G, Bouma G (2005) A NFKB1 promoter polymorphism is involved in susceptibility to ulcerative colitis. Int J Immunogenet 32: 401–405. doi:10.1111/j.1744-313X.2005.00546.x

    Article  PubMed  CAS  Google Scholar 

  10. Xu J, Hagler A (2002) Chemoinformatics and drug discovery. Molecules 7: 566–600. doi:10.3390/70800566

    Article  CAS  Google Scholar 

  11. Oprea TI (2002) Virtual screening in lead discovery: a viewpoint. Molecules 7: 51–62. doi:10.3390/70100051

    Article  CAS  Google Scholar 

  12. Amigo JM, Galvez J, Villar VM (2009) A review on molecular topology: applying graph theory to drug discovery and design. Naturwissenschaften 96: 749–761. doi:10.1007/s00114-009-0536-7

    Article  PubMed  CAS  Google Scholar 

  13. Garcia-Domenech R, Galvez J, de Julian-Ortiz JV, Pogliani L (2008) Some new trends in chemical graph theory. Chem Rev 108: 1127–1169. doi:10.1021/cr0780006

    Article  PubMed  CAS  Google Scholar 

  14. Horrobin DF (2000) Innovation in the pharmaceutical industry. J R Soc Med 93: 341–345

    PubMed  CAS  Google Scholar 

  15. Bruno-Blanch L, Galvez J, Garcia-Domenech R (2003) Topological virtual screening: a way to find new anticonvulsant drugs from chemical diversity. Bioorg Med Chem Lett 13: 2749–2754. doi:10.1016/S0960-894X(03)00535-3

    Article  PubMed  CAS  Google Scholar 

  16. Mahmoudi N, Garcia-Domenech R, Galvez J et al (2008) New active drugs against liver stages of plasmodium predicted by molecular topology. Antimicrob Agents Chemother 52: 1215–1220. doi:10.1128/AAC.01043-07

    Article  PubMed  CAS  Google Scholar 

  17. Mishra RK, Garcia-Domenech R, Galvez J (2001) Getting discriminant functions of antibacterial activity from physicochemical and topological parameters. J Chem Inf Comput Sci 41: 387–393. doi:10.1021/ci000303c

    PubMed  CAS  Google Scholar 

  18. de Gregorio Alapont C, Garcia-Domenech R, Galvez J, Ros MJ, Wolski S, Garcia MD (2000) Molecular topology: a useful tool for the search of new antibacterial. Bioorg Med Chem Lett 10: 2033–2036. doi:10.1016/S0960-894X(00)00406-6

    Article  PubMed  Google Scholar 

  19. Garcia-Domenech R, Catala-Gregori A, Calabuig C, Anton-Fos G, del Castillo L, Galvez J (2002) Predictiong antifungal activity: a computational screening using topological descriptors. Internet Electron J Mol Des 1: 339–350

    CAS  Google Scholar 

  20. Jasinski P, Welsh B, Galvez J, Land D, Zwolak P, Ghandi L, Terai K, Dudek AZ (2008) A novel quinoline, MT477: suppresses cell signaling through ras molecular pathway, inhibits PKC activity, and demonstrates in vivo anti-tumor activity against human carcinoma cell lines. Investig New Drug 26: 223–232. doi:10.1007/s10637-007-9096-x

    Article  CAS  Google Scholar 

  21. Duart MJ, Garcia-Domenech R, Galvez J, Aleman PA, Martin-Algarra RV, Anton-Fos GM (2006) Application of a Mathematical Topological Pattern of Antihistaminic Activity for the Selection of New Drug Candidates and Pharmacology Assays. J Med Chem 49: 3667–3673. doi:10.1021/jm0580555

    Article  PubMed  CAS  Google Scholar 

  22. Rios-Santamarina I, Garcia-Domenech R, Galvez J, Morcillo Esteban J, Santamaria P, Cortijo J (2004) Getting new bronchodilator compounds from molecular topology. Eur J Pharm Sci 22: 271–277. doi:10.1016/j.ejps.2004.03.013

    Article  PubMed  CAS  Google Scholar 

  23. Galvez J, Garcia-Domenech R, Gomez-Lechon MJ, Castell JV (2000) Use of molecular topology in the selection of new cytostatic drugs. J Mol Struct 504: 241–248. doi:10.1016/S0166-1280(00)00365-1

    CAS  Google Scholar 

  24. Galvez-Llompart M, Giner M, Recio C, Candeletti S, Garcia-Domenech R (2010) Application of molecular topology to the search of novel NSAIDs: experimental validation of activity. Lett Drug Des Discov 7: 438–445. doi:10.2174/157018010791306597

    Article  CAS  Google Scholar 

  25. Dolinnaya N, Kubareva EA, Kazanova E, Zigangirova N, Naroditsky B, Gintsburg A, Oretskaya TS (2008) Low-molecular-weight inhibitors of NF-κB signalling pathways. Russ Chem Rev 77: 967–981. doi:10.1070/RC2008v077n11ABEH003881

    Article  CAS  Google Scholar 

  26. Galvez J, Garcia R, Salabert M, Soler R (1994) Charge indexes. New topological descriptors. J Chem Inf Comput Sci 34: 520–525. doi:10.1021/ci00019a008

    CAS  Google Scholar 

  27. Kier LB, Hall LH (1976) Molecular connectivity in chemistry by drug research. Academic Press, London, pp, pp 46–79

    Google Scholar 

  28. Kier LB, Hall LH (1977) The nature of structure–activity relationships and their relation to molecular connectivity. Eur J Med Chem 12: 307–312

    CAS  Google Scholar 

  29. Kier LB, Hall LH (1986) Molecular connectivity in structure-activity analysis. John Wiley & Sons Inc, New York

    Google Scholar 

  30. Randic M (1977) On canonical numbering of atoms in a molecule and graph isomorphism. J Chem Inf Comput Sci 17: 171–180. doi:10.1021/ci60011a013

    CAS  Google Scholar 

  31. DESMOL11 software, Molecular Connectivity and Drug Design Research Unit, Faculty of Pharmacy, University of Valencia, Spain.

  32. Todeschini R, Consonni V (2009) Molecular descriptors for Chemoinformatics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  33. Dixon WJ (1990) BMDP Statistical Software, Univeristy of California, Berkeley

  34. Galvez J, Garcia-Domenech R, de Gregorio Alapont C, de Julian-Ortiz JV, Popa L (1996) Pharmacological distribution diagrams: a tool for de novo drug design. J Mol Graphics 14: 272–276. doi:10.1016/S0263-7855(96)00081-1

    Article  CAS  Google Scholar 

  35. Jain HK, Agrawal RK (2007) Topological descriptors in modeling tumor necrosis factor alpha inhibitory activity of xanthines, pteridinediones and related compounds. Internet Electron J Mol Des 6: 218–228

    CAS  Google Scholar 

  36. Huang L (1985) Pharmacological effect of the organic acid of achillea alpina. Zhong Yao Tong Bao 10: 38–40

    PubMed  CAS  Google Scholar 

  37. McLeod MJ (1980) Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S. Teratology 22: 299–301. doi:10.1002/tera.1420220306

    Article  PubMed  CAS  Google Scholar 

  38. El Alfy T, El Sawi S, Sleem A, Moawad D (2010) Investigation of flavonoidal content and biological activities of Chorisia Insignis Hbk. Leaves. Aust J Basic Appl Sci 4: 1334–1348

    CAS  Google Scholar 

  39. Parish CR (1999) Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol Cell Biol 77: 499–508

    Article  PubMed  CAS  Google Scholar 

  40. Zhang Y, Reenstra WW, Chidekel A (2001) Antibacterial activity of apical surface fluid from the human airway cell line calu-3: Pharmacologic alteration by corticosteroids and beta(2)-agonists. Am J Respir Cell Mol 25: 196–202

    CAS  Google Scholar 

  41. Pelzer LE, Guardia T, Juarez AO, Guerreiro E (1998) Acute and chronic antiinflammatory effects of plant flavonoids. Farmaco 53: 421–424. doi:10.1016/S0014-827X(98)00046-9

    Article  PubMed  CAS  Google Scholar 

  42. Marante FJT, Castellano AG, Rosas FE, Aguiar JQ, Barrera JB (2003) Identification and quantitation of allelochemicals from the lichen lethariella canariensis: phytotoxicity and antioxidative activity. J Chem Ecol 29: 2049–2071. doi:10.1023/A:1025682318001

    Article  CAS  Google Scholar 

  43. Benavente-Garcia O, Castillo J (2008) Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 56: 6185–6205. doi:10.1021/jf8006568

    Article  PubMed  CAS  Google Scholar 

  44. Cashman J, Burt H, Springate C, Gleave J, Jackson J (2004) Camptothecin-loaded films for the prevention of postsurgical adhesions. Inflamm Res 53: 355–362. doi:10.1007/s00011-004-1272-2

    Article  PubMed  CAS  Google Scholar 

  45. Alencar N, Cavalcante C, Vasconcelos M, Leite K, Aragão K, Assreuy A, Nogueira N, Cavada B, Vale M (2005) Anti-inflammatory and antimicrobial effect of lectin from lonchocarpus sericeus seeds in an experimental rat model of infectious peritonitis. J Pharm Pharmacol 57: 919–922. doi:10.1211/0022357056352

    Article  PubMed  CAS  Google Scholar 

  46. Du H, Matsushima T, Spyvee M, Goto M, Shirota H, Gusovsky F, Chiba K, Kotake M, Yoneda N, Eguchi Y (2009) Discovery of a potent, metabolically stabilized resorcylic lactone as an anti-inflammatory lead. Bioorg Med Chem Lett 19: 6196–6199. doi:10.1016/j.bmcl.2009.08.096

    Article  PubMed  CAS  Google Scholar 

  47. Mishchenko N, Fedoreev S, Bryukhanov V, Zverev YF, Lampatov V, Azarova O, Shkryl’ YN, Chernoded G (2007) Chemical composition and pharmacological activity of anthraquinones from rubia cordifolia cell culture. Pharm Chem J 41: 605–609. doi:10.1007/s11094-008-0021-1

    Article  CAS  Google Scholar 

  48. Su P, Wang G, Wu D, Sheng X (2008) Progress in rosmarinic acid biological activities and its sources. Shipin Yu Fajiao Gongye 34: 135–138

    CAS  Google Scholar 

  49. Liu J (2005) Oleanolic acid and ursolic acid: research perspectives. J Ethnopharmacol 100: 92–94. doi:10.1016/j.jep.2005.05.024

    Article  PubMed  CAS  Google Scholar 

  50. Marquez-Martin A, Puerta RDL, Fernandez-Arche A, Ruiz-Gutierrez V, Yaqoob P (2006) Modulation of cytokine secretion by pentacyclic triterpenes from olive pomace oil in human mononuclear cells. Cytokine 36: 211–217. doi:10.1016/j.cyto.2006.12.007

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón García-Domenech.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (XLS 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gálvez-Llompart, M., Recio, M.C. & García-Domenech, R. Topological virtual screening: a way to find new compounds active in ulcerative colitis by inhibiting NF-κB. Mol Divers 15, 917–926 (2011). https://doi.org/10.1007/s11030-011-9323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-011-9323-4

Keywords

Navigation