Skip to main content
Log in

Targeting tuberculosis through a small focused library of 1,2,3-triazoles

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Looking for new active molecules against Mycobacterium tuberculosis, a small focused library of 1,2,3-triazoles was efficiently prepared by click chemistry. Compounds were subsequently tested against different pathogenic and opportunistic mycobacteria including M. avium and M. tuberculosis. Two of them showed MIC at lower μg/mL concentration for M. avium and even below that for M. tuberculosis, being more potent that control drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C (2003) Tuberculosis. Lancet 362: 887–899. doi:10.1016/S0140-6736(03)14333-4

    Article  PubMed  Google Scholar 

  2. WHO: (1993) Tuberculosis on the increase. World Health Forum 14: 1–94

    Google Scholar 

  3. Espinal MA (2003) The global situation of MDR-TB. Tuberculosis 83: 44–51. doi:10.1016/S1472-9792(02)00058-6

    Article  PubMed  Google Scholar 

  4. Afanas’ev M, Ikryannikova L, Il’ina E, Kuz’min A, Larionova E, Smirnova T, Chernousova L, Govorun V (2011) Molecular typing of Mycobacterium tuberculosis circulated in Moscow, Russian Federation. Eur J Clin Microbiol Infect Dis 30: 181–191. doi:10.1007/s10096-010-1067-z

    Article  PubMed  Google Scholar 

  5. Coker R (2001) Detention and mandatory treatment for tuberculosis patients in Russia. Lancet 358: 349–350. doi:10.1016/S0140-6736(01)05587-8

    Article  PubMed  CAS  Google Scholar 

  6. World Health Organization (2002) Global tuberculosis control: surveillance, planning, financing. WHO/CDS/TB/2002.295. World Health Organization, Geneva, Switzerland

  7. Sepkowitz K, Raffalli J, Riley L, Kiehn T, Armstrong D (1995) Tuberculosis in the AIDS era. Clin Microbiol Rev 8: 180–199

    PubMed  CAS  Google Scholar 

  8. Janin YL (2007) Antituberculosis drugs: ten years of research. Bioorg Med Chem 15: 2479–2513. doi:10.1016/j.bmc.2007.01.030

    Article  PubMed  CAS  Google Scholar 

  9. Spalding MD, Prigge ST (2010) Lipoic acid metabolism in microbial pathogens. Microbiol Mol Biol Rev 74: 200–228. doi:10.1128/MMBR.00008-10

    Article  PubMed  CAS  Google Scholar 

  10. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48: 77–84. doi:10.1046/j.1365-2958.2003.03425.x

    Article  PubMed  CAS  Google Scholar 

  11. Ma Q, Zhao X, Nasser Eddine A, Geerlof A, Li X, Cronan JE, Kaufmann SH, Wilmanns M (2006) The Mycobacterium tuberculosis LipB enzyme functions as a cysteine/lysine dyad acyltransferase. Proc Natl Acad Sci USA 103: 8662–8667. doi:10.1073/pnas.0510436103

    Article  PubMed  CAS  Google Scholar 

  12. Morbidoni HR, Vilcheze C, Kremer L, Bittman R, Sacchettini JC, Jacobs WR Jr (2006) Dual inhibition of mycobacterial fatty acid biosynthesis and degradation by 2-alkynoic acids. Chem Biol 13: 297–307. doi:10.1016/j.chembiol.2006.01.005

    Article  PubMed  CAS  Google Scholar 

  13. Vilcheze C, Morbidoni HR, Weisbrod TR, Iwamoto H, Kuo M, Sacchettini JC, Jacobs WR Jr (2000) Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J Bacteriol 182: 4059–4067. doi:10.1128/JB.186.13.4051-4055.2004

    Article  PubMed  CAS  Google Scholar 

  14. Lu H, Tonge PJ (2008) Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway. Acc Chem Res 41: 11–20. doi:10.1021/ar700156e

    Article  PubMed  CAS  Google Scholar 

  15. Sullivan TJ, Truglio JJ, Boyne ME, Novichenok P, Zhang X, Stratton CF, Li HJ, Kaur T, Amin A, Johnson F, Slayden RA, Kisker C, Tonge PJ (2006) High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem Biol 1: 43–53. doi:10.1021/cb0500042

    Article  PubMed  CAS  Google Scholar 

  16. Rivers EC, Mancera RL (2008) New anti-tuberculosis drugs with novel mechanisms of action. Curr Med Chem 15: 1956–1967. doi:10.2174/092986708785132906

    Article  PubMed  CAS  Google Scholar 

  17. McLean KJ, Marshall KR, Richmond A, Hunter IS, Fowler K, Kieser T, Gurcha SS, Besra GS, Munro AW (2002) Azole antifungals are potent inhibitors of cytochrome P450 mono-oxygenases and bacterial growth in mycobacteria and streptomycetes. Microbiology 148: 2937–2949

    PubMed  CAS  Google Scholar 

  18. Ahmad Z, Sharma S, Khuller GK (2005) In vitro and ex vivo antimycobacterial potential of azole drugs against Mycobacterium tuberculosis H37Rv. FEMS Microbiol Lett 251: 19–22. doi:10.1016/j.femsle.2005.07.022

    Article  PubMed  CAS  Google Scholar 

  19. Ahmad Z, Sharma S, Khuller GK (2006) The potential of azole antifungals against latent/persistent tuberculosis. FEMS Microbiol Lett 258: 200–203. doi:10.1111/j.1574-6968.2006.00224.x

    Article  PubMed  CAS  Google Scholar 

  20. Ahmad Z, Sharma S, Khuller GK (2006) Azole antifungals as novel chemotherapeutic agents against murine tuberculosis. FEMS Microbiol Lett 261: 181–186. doi:10.1111/j.1574-6968.2006.00350.x

    Article  PubMed  CAS  Google Scholar 

  21. Jadhav GR, Shaikh MU, Kale RP, Shiradkar MR, Gill CH (2009) SAR study of clubbed [1,2,4]-triazolyl with fluorobenzimidazoles as antimicrobial and antituberculosis agents. Eur J Med Chem 44: 2930–2935. doi:10.1016/j.ejmech.2008.12.001

    Article  PubMed  CAS  Google Scholar 

  22. Ozdemir A, Turan-Zitouni G, Kaplancikli ZA, Chevallet P (2007) Synthesis of some 4-arylidenamino-4H-1,2,4-triazole-3-thiols and their antituberculosis activity. J Enzyme Inhib Med Chem 22: 511–516. doi:10.1080/14756360601178424

    Article  PubMed  Google Scholar 

  23. Kaplancikli ZA, Turan-Zitouni G, Chevallet P (2005) Synthesis and antituberculosis activity of new 3-alkylsulfanyl-1,2,4-triazole derivatives. J Enzyme Inhib Med Chem 20: 179–182. doi:10.1080/14756360500043471

    Article  PubMed  CAS  Google Scholar 

  24. Shiradkar MR, Murahari KK, Gangadasu HR, Suresh T, Kalyan CA, Panchal D, Kaur R, Burange P, Ghogare J, Mokale V, Raut M (2007) Synthesis of new S-derivatives of clubbed triazolyl thiazole as anti-Mycobacterium tuberculosis agents. Bioorg Med Chem 15: 3997–4008. doi:10.1016/j.bmc.2007.04.003

    Article  PubMed  CAS  Google Scholar 

  25. Dabak K, Sezer O, Akar A, Anac O (2003) Synthesis and investigation of tuberculosis inhibition activities of some 1,2,3-triazole derivatives. Eur J Med Chem 38: 215–218. doi:10.1016/S0223-5234(02)01445-9

    Article  PubMed  CAS  Google Scholar 

  26. Costa MS, Boechat N, Rangel EA, de C. da Silva F, de Souza AM, Rodrigues CR, Castro HC, Junior IN, Lourenco MC, Wardell SM, Ferreira VF (2006) Synthesis, tuberculosis inhibitory activity, and SAR study of N-substituted-phenyl-1,2,3-triazole derivatives. Bioorg Med Chem 14: 8644–8653. doi:10.1016/j.bmc.2006.08.019

    Article  PubMed  CAS  Google Scholar 

  27. Gill C, Jadhav G, Shaikh M, Kale R, Ghawalkar A, Nagargoje D, Shiradkar M (2008) Clubbed [1,2,3] triazoles by fluorine benzimidazole: a novel approach to H37Rv inhibitors as a potential treatment for tuberculosis. Bioorg Med Chem Lett 18: 6244–6247. doi:10.1016/j.bmcl.2008.09.096

    Article  PubMed  CAS  Google Scholar 

  28. Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8: 1128–1137. doi:10.1016/S1359-6446(03)02933-7

    Article  PubMed  CAS  Google Scholar 

  29. Tron GC, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA (2008) Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes. Med Res Rev 28: 278–308. doi:10.1002/med.20107

    Article  PubMed  CAS  Google Scholar 

  30. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Hüisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl 41: 2596–2599. doi:10.1002/1521-3773(20020715)41:14

    Article  PubMed  CAS  Google Scholar 

  31. Lee B-Y, Park SR, Jeon HB, Kim KS (2006) A new solvent system for efficient synthesis of 1,2,3-triazoles. Tetrahedron Lett 47: 5105–5109. doi:10.1016/j.tetlet.2006.05.079

    Article  CAS  Google Scholar 

  32. Angelo NG, Arora PS (2007) Solution- and solid-phase synthesis of triazole oligomers that display protein-like functionality. J Org Chem 72: 7963–7967. doi:10.1021/jo701292h

    Article  PubMed  CAS  Google Scholar 

  33. VijayaRaghava Reddy L, Venkat Reddy P, Mishra NN, Shukla PK, Yadav G, Srivastava R, Shaw AK (2010) Synthesis and biological evaluation of glycal-derived novel tetrahydrofuran 1,2,3-triazoles by ‘click’ chemistry. Carbohydr Res 345: 1515–1521. doi:10.1016/j.carres.2010.03.031

    Article  CAS  Google Scholar 

  34. Jlalia I, Beauvineau C, Beauvière S, Önen E, Aufort M, Beauvineau A, Khaba E, Herscovici J, Meganem F, Girard C (2010) Automated synthesis of a 96 product-sized library of triazole derivatives using a solid phase supported copper catalyst. Molecules 15: 3087–3120. doi:10.3390/molecules15053087

    Article  PubMed  CAS  Google Scholar 

  35. Turner RA, Oliver AG, Lokey RS (2007) Click chemistry as a macrocyclization tool in the solid-phase synthesis of small cyclic peptides. Org Lett 9: 5011–5014. doi:10.1021/ol702228u

    Article  PubMed  CAS  Google Scholar 

  36. Colombano G, Travelli C, Galli U, Caldarelli A, Chini MG, Canonico PL, Sorba G, Bifulco G, Tron GC, Genazzani AA (2009) A novel potent nicotinamide phosphoribosyltransferase inhibitor synthesized via click chemistry. J Med Chem 53: 616–623. doi:10.1021/jm9010669

    Article  Google Scholar 

  37. Jia Z, Zhu Q (2010) ‘Click’ assembly of selective inhibitors for MAO-A. Bioorg Med Chem Lett 20: 6222–6225. doi:10.1016/j.bmcl.2010.08.104

    Article  PubMed  CAS  Google Scholar 

  38. Choi KW, Brimble MA (2008) Synthesis of spiroacetal-triazoles as privileged natural product-like scaffolds using “click chemistry”. Org Biomol Chem 6: 3518–3526. doi:10.1039/b808454h

    Article  PubMed  CAS  Google Scholar 

  39. Bagwell CL, Moloney MG, Yaqoob M (2010) Oxazolomycins: natural product lead structures for novel antibacterials by click fragment conjugation. Bioorg Med Chem Lett 20: 2090–2094. doi:10.1016/j.bmcl.2010.02.066

    Article  PubMed  CAS  Google Scholar 

  40. Philalay JS, Palermo CO, Hauge KA, Rustad TR, Cangelosi GA (2004) Genes required for intrinsic multidrug resistance in Mycobacterium avium. Antimicrob Agents Chemother 48: 3412–3418. doi:10.1128/AAC.48.9.3412-3418.2004

    Article  PubMed  CAS  Google Scholar 

  41. Barry CE III, Slayden RA, Sampson AE, Lee RE (2000) Use of genomics and combinatorial chemistry in the development of new antimycobacterial drugs. Biochem Pharmacol 59: 221–231. doi:10.1016/S0006-2952(99)00253-1

    Article  PubMed  CAS  Google Scholar 

  42. Prado S, Ledeit H, Michel S, Koch M, Darbord JC, Cole ST, Tillequin F, Brodin P (2006) Benzofuro[3,2-f][1]benzopyrans: a new class of antitubercular agents. Bioorg Med Chem 14: 5423–5428. doi:10.1016/j.bmc.2006.03.033

    Article  PubMed  CAS  Google Scholar 

  43. Appukkuttan P, Dehaen W, Fokin VV, Van der Eycken E (2004) A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper(I)-catalyzed three-component reaction. Org Lett 6: 4223–4225. doi:10.1021/ol048341v

    Article  PubMed  CAS  Google Scholar 

  44. Babich H, Borenfreund E (1991) Cytotoxicity of T-2 toxin and its metabolites determined with the neutral red cell viability assay. Appl Environ Microbiol 57: 2101–2103

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo R. Labadie.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 1,122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labadie, G.R., de la Iglesia, A. & Morbidoni, H.R. Targeting tuberculosis through a small focused library of 1,2,3-triazoles. Mol Divers 15, 1017–1024 (2011). https://doi.org/10.1007/s11030-011-9319-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-011-9319-0

Keywords

Navigation