Skip to main content

Advertisement

Log in

Comparative docking and CoMFA analysis of curcumine derivatives as HIV-1 integrase inhibitors

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The docking studies and comparative molecular field analysis (CoMFA) were performed on highly active molecules of curcumine derivatives against 3′ processing activity of HIV-1 integrase (IN) enzyme. The optimum CoMFA model was selected with statistically significant cross-validated r2 value of 0.815 and non-cross validated r 2 value of 0.99. The common pharmacophore of highly active molecules was used for screening of HIV-1 IN inhibitors. The high contribution of polar interactions in pharmacophore mapping is well supported by docking and CoMFA results. The results of docking, CoMFA, and pharmacophore mapping give structural insights as well as important binding features of curcumine derivatives as HIV-1 IN inhibitors which can provide guidance for the rational design of novel HIV-1 IN inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. d’Angelo J, Mouscadet JF, Desmaële D, Zouhiri F, Leh H (2001) HIV-1 integrase: the next target for AIDS therapy?. Pathol Biol 49: 237–246. doi:10.1016/S0369-8114(01)00135-3

    Article  PubMed  Google Scholar 

  2. Ding J, Das K, Moereels H, Koymans L, Andries K, Janssen PAJ, Hughes SH, Arnold E (1995) Structure of HIV-1 RT/TIBOR 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors. Nat Struct Biol 2: 407–415. doi:10.1038/nsb0595-407

    Article  PubMed  CAS  Google Scholar 

  3. Johnson AA, Marchand C, Pommier Y (2004) HIV-1 integrase inhibitors: a decade of research and two drugs in clinical trial. Curr Top Med Chem 4: 1059–1077

    Article  PubMed  CAS  Google Scholar 

  4. The UK collaborative group on HIV drug resistance and UK CHIC study group: (2010) Long-term probability of detecting drug-resistant hiv in treatment-naive patients initiating combination antiretroviral therapy. Clin Infect Dis 50: 1275–1285. doi:10.1086/651684

    Article  Google Scholar 

  5. Harrigan PR (2010) Editorial commentary: HIV drug resistance over the long haul. Clin Infect Dis 50: 1286–1287. doi:10.1086/651685

    Article  PubMed  Google Scholar 

  6. Pommier Y, Johnson AA, Marchand C (2005) Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discov 4: 236–248. doi:10.1038/nrd1660

    Article  PubMed  CAS  Google Scholar 

  7. Richman DD (2001) HIV chemotherapy. Nature 410: 995–1001. doi:10.1038/35073673

    Article  PubMed  CAS  Google Scholar 

  8. Goldgur Y, Craigie R, Cohen GH, Fujiwara T, Yoshinaga T, Fujishita T, Sugimoto H, Endo T, Murai H, Davies DR (1999) Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. P Natl Acad Sci USA 96: 13040–13043

    Article  CAS  Google Scholar 

  9. Zheng R, Jenkins TM, Craigie R (1996) Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. P Natl Acad Sci USA 93: 13659–13664

    Article  CAS  Google Scholar 

  10. Engelman A, Craigie R (1992) Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J Virol 66: 6361–6369

    PubMed  CAS  Google Scholar 

  11. Leavitt AD, Shiue L, Varmus HE (1993) Site-directed mutagenesis of HIV-1 integrase demonstrates differential effects on integrase functions in vitro. J Biol Chem 268: 2113–2119

    PubMed  CAS  Google Scholar 

  12. Chiu TK, Davies DR (2004) Structure and function of HIV-1 integrase. Curr Top Med Chem 4: 965–977

    Article  PubMed  CAS  Google Scholar 

  13. Asante-Appiah E, Skalka AM (1997) A metal-induced conformational change and activation of HIV-1 integrase. J Biol Chem 272: 16196–16205. doi:10.1074/jbc.272.26.16196

    Article  PubMed  CAS  Google Scholar 

  14. Drelich M, Wilhelm R, Mous J (1992) Identification of amino acid residues critical for endonuclease and integration activities of HIV-1 IN protein in vitro. Virology 188: 459–468. doi:10.1016/0042-6822(92)90499-F

    Article  PubMed  CAS  Google Scholar 

  15. Bujacz G, Alexandratos J, Wlodawer A, Merkel G, Andrake M, Katz RA, Skalka AM (1997) Binding of different divalent cations to the active site of avian sarcoma virus integrase and their effects on enzymatic activity. J Biol Chem 272: 18161–18168. doi:10.1074/jbc.272.29.18161

    Article  PubMed  CAS  Google Scholar 

  16. Neamati N, Lin Z, Karki RG, Orr A, Cowansage K, Strumberg D, Pais GCG, Voigt JH, Nicklaus MC, Winslow HE (2002) Metal-dependent inhibition of HIV-1 integrase. J Med Chem 45: 5661–5670. doi:10.1021/jm0201417

    Article  PubMed  CAS  Google Scholar 

  17. Grobler JA, Stillmock K, Hu B, Witmer M, Felock P, Espeseth AS, Wolfe A, Egbertson M, Bourgeois M, Melamed J (2002) Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. P Natl Acad Sci USA 99: 6661–6666

    Article  CAS  Google Scholar 

  18. Maignan S, Guilloteau JP, Zhou-Liu Q, Clément-Mella C, Mikol V (1998) Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J Mol Biol 282: 359–368. doi:10.1006/jmbi.1998.2002

    Article  PubMed  CAS  Google Scholar 

  19. Goldgur Y, Dyda F, Hickman AB, Jenkins TM, Craigie R, Davies DR (1998) Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. P Natl Acad Sci USA 95: 9150–9154

    Article  CAS  Google Scholar 

  20. Steitz TA (1998) A mechanism for all polymerases. Nature 391: 231–232. doi:10.1038/34542

    Article  PubMed  CAS  Google Scholar 

  21. Chen X, Tsiang M, Yu F, Hung M, Jones GS, Zeynalzadegan A, Qi X, Jin H, Kim CU, Swaminathan S (2008) Modeling, analysis, and validation of a novel HIV integrase structure provide insights into the binding modes of potent integrase inhibitors. J Mol Biol 380: 504–519. doi:10.1016/j.jmb.2008.04.054

    Article  PubMed  CAS  Google Scholar 

  22. Long YQ, Jiang XH, Dayam R, Sanchez T, Shoemaker R, Sei S, Neamati N (2004) Rational design and synthesis of novel dimeric diketoacid-containing inhibitors of HIV-1 integrase: implication for binding to two metal ions on the active site of integrase. J Med Chem 47: 2561–2573. doi:10.1021/jm030559k

    Article  PubMed  CAS  Google Scholar 

  23. Lubkowski J, Yang F, Alexandratos J, Wlodawer A, Zhao H, Burke TR, Neamati N, Pommier Y, Merkel G, Skalka AM (1998) Structure of the catalytic domain of avian sarcoma virus integrase with a bound HIV-1 integrase-targeted inhibitor. P Natl Acad Sci USA 95: 4831–4836

    Article  CAS  Google Scholar 

  24. Kawasuji T, Fuji M, Yoshinaga T, Sato A, Fujiwara T, Kiyama R (2006) A platform for designing HIV integrase inhibitors. Part 2: a two-metal binding model as a potential mechanism of HIV integrase inhibitors. Bioorgan Med Chem 14: 8420–8429. doi:10.1016/j.bmc.2006.08.043

    Article  CAS  Google Scholar 

  25. Savarino A (2007) In-silico docking of HIV-1 integrase inhibitors reveals a novel drug type acting on an enzyme/DNA reaction intermediate. Retrovirology 4: 21. doi:10.1186/1742-4690-4-21

    Article  PubMed  Google Scholar 

  26. Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P (2010) Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464: 232–236. doi:10.1038/nature08784

    Article  PubMed  CAS  Google Scholar 

  27. Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M, Cherepanov P (2009) Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res 37: 243–255. doi:10.1093/nar/gkn938

    Article  PubMed  CAS  Google Scholar 

  28. Gupta P, Roy N, Garg P (2009) Docking-based 3D-QSAR study of HIV-1 integrase inhibitors. Eur J Med Chem 44: 4276–4287. doi:10.1016/j.ejmech.2009.07.010

    Article  PubMed  CAS  Google Scholar 

  29. Kuo CL, Assefa H, Kamath S, Brzozowski Z, Slawinski J, Saczewski F, Buolamwini JK, Neamati N (2004) Application of CoMFA and CoMSIA 3D-QSAR and docking studies in optimization of mercaptobenzenesulfonamides as HIV-1 integrase inhibitors. J Med Chem 47: 385–399. doi:10.1021/jm030378i

    Article  PubMed  CAS  Google Scholar 

  30. Buolamwini JK, Assefa H (2002) CoMFA and CoMSIA 3D QSAR and docking studies on conformationally-restrained cinnamoyl HIV-1 integrase inhibitors: exploration of a binding mode at the active site. J Med Chem 45: 841–852. doi:10.1021/jm010399h

    Article  PubMed  CAS  Google Scholar 

  31. Vajragupta O, Boonchoong P, Morris GM, Olson AJ (2005) Active site binding modes of curcumin in HIV-1 protease and integrase. Bioorgan Med Chem 15: 3364–3368. doi:10.1016/j.bmcl.2005.05.032

    Article  CAS  Google Scholar 

  32. Dayam R, Neamati N (2004) Active site binding modes of the ß-diketoacids: a multi-active site approach in HIV-1 integrase inhibitor design. Bioorg Med Chem 12: 6371–6381. doi:10.1016/j.bmc.2004.09.035

    Article  PubMed  CAS  Google Scholar 

  33. Sechi M, Derudas M, Dallocchio R, Dessi A, Bacchi A, Sannia L, Carta F, Palomba M, Ragab O, Chan C (2004) Design and synthesis of novel Indole [beta]-diketo acid derivatives as HIV-1 integrase inhibitors. J Med Chem 47: 5298–5310. doi:10.1021/jm049944f

    Article  PubMed  CAS  Google Scholar 

  34. Serrao E, Odde S, Ramkumar K, Neamati N (2009) Raltegravir, elvitegravir, and metoogravir: the birth of “me-too” HIV-1 integrase inhibitors. Retrovirology 6: 25. doi:10.1186/1742-4690-6-25

    Article  PubMed  Google Scholar 

  35. Sotriffer CA, Ni H, McCammon JA (2000) Active site binding modes of HIV-1 integrase inhibitors. J Med Chem 43: 4109–4117. doi:10.1021/jm000194t

    Article  PubMed  CAS  Google Scholar 

  36. Gupta P, Kumar R, Garg P, Singh IP (2010) Active site binding modes of dimeric phloroglucinols for HIV-1 reverse transcriptase, protease and integrase. Bioorg Med Chem Lett 20: 4427–4431. doi:10.1016/j.bmcl.2010.06.057

    Article  PubMed  CAS  Google Scholar 

  37. Costi R, Santo RD, Artico M, Massa S, Ragno R, Loddo R, La Colla M, Tramontano E, La Colla P, Pani A (2004) 2, 6-Bis (3, 4, 5-trihydroxybenzylydene) derivatives of cyclohexanone novel potent HIV-1 integrase inhibitors that prevent HIV-1 multiplication in cell-based assays. Bioorg Med Chem 12: 199–215. doi:10.1016/j.bmc.2003.10.005

    Article  PubMed  CAS  Google Scholar 

  38. Deswal S, Roy N (2007) A novel range based QSAR study of human neuropeptide Y (NPY) Y5 receptor inhibitors. Eur J Med Chem 42: 463–470. doi:10.1016/j.ejmech.2006.09.011

    Article  PubMed  CAS  Google Scholar 

  39. Golbraikh A, Tropsha A (2002) Beware of q2!. J Mol Graph Model 20: 269–276

    Article  PubMed  CAS  Google Scholar 

  40. Kramer B, Rarey M, Lengauer T (1999) Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins 37: 228–241. doi:10.1002/(SICI)1097-0134(19991101)37:2<228:AID-PROT8>3.0.CO;2-8

    Article  PubMed  CAS  Google Scholar 

  41. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36: 3219–3228. doi:10.1016/0040-4020(80)80168-2

    Article  CAS  Google Scholar 

  42. Powell MJD (1977) Restart procedures for the conjugate gradient method. Math Program 12: 241–254. doi:10.1007/BF01593790

    Article  Google Scholar 

  43. Carayon K, Leh H, Henry E, Simon F, Mouscadet JF, Deprez E (2010) A cooperative and specific DNA-binding mode of HIV-1 integrase depends on the nature of the metallic cofactor and involves the zinc-containing N-terminal domain. Nucleic Acids Res 38: 3692–3708. doi:10.1093/nar/gkq087

    Article  PubMed  CAS  Google Scholar 

  44. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19: 1639–1662. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B

    Article  CAS  Google Scholar 

  45. Richard DC III, David EP, Jeffrey DB (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110: 5959–5967. doi:10.1021/ja00226a005

    Article  Google Scholar 

  46. Ren JX, Li LL, Zou J, Yang L, Yang JL, Yang SY (2009) Pharmacophore modeling and virtual screening for the discovery of new transforming growth factor- type I receptor (ALK5) inhibitors. Eur J Med Chem 44: 4259–4265. doi:10.1016/j.ejmech.2009.07.008

    Article  PubMed  CAS  Google Scholar 

  47. Schuster D, Maurer EM, Laggner C, Nashev LG, Wilckens T, Langer T, Odermatt A (2006) The discovery of new 11 [beta]-hydroxysteroid dehydrogenase type 1 inhibitors by common feature pharmacophore modeling and virtual screening. J Med Chem 49: 3454–3466. doi:10.1021/jm0600794

    Article  PubMed  CAS  Google Scholar 

  48. Drake RR, Neamati N, Hong H, Pilon AA, Sunthankar P, Hume SD, Milne GW, Pommier Y (1998) Identification of a nucleotide binding site in HIV-1 integrase. Proc Natl Acad Sci USA 95: 4170–4175

    Article  PubMed  CAS  Google Scholar 

  49. Jenkins TM, Esposito D, Engelman A, Craigie R (1997) Critical contacts between HIV-1 integrase and viral DNA identified by structure-based analysis and photo-crosslinking. EMBO J 16: 6849–6859. doi:10.1093/emboj/16.22.6849

    Article  PubMed  CAS  Google Scholar 

  50. Marchand C, Johnson AA, Karki RG, Pais GCG, Zhang X, Cowansage K, Patel TA, Nicklaus MC, Burke TR, Pommier Y (2003) Metal-dependent inhibition of HIV-1 integrase by ß-diketo acids and resistance of the soluble double-mutant (F185K/C280S). Mol Pharmacol 64: 600–609. doi:10.1124/mol.64.3.600

    Article  PubMed  CAS  Google Scholar 

  51. Barreca ML, Ferro S, Rao A, De Luca L, Zappala M, Monforte AM, Debyser Z, Witvrouw M, Chimirri A (2005) Pharmacophore-based design of HIV-1 integrase strand-transfer inhibitors. J Med Chem 48: 7084–7088. doi:10.1021/jm050549e

    Article  PubMed  CAS  Google Scholar 

  52. Deng J, Lee KW, Sanchez T, Cui M, Neamati N, Briggs JM (2005) Dynamic receptor-based pharmacophore model development and its application in designing novel HIV-1 integrase inhibitors. J Med Chem 48: 1496–1505. doi:10.1021/jm049410e

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabha Garg.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 6,744 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, P., Garg, P. & Roy, N. Comparative docking and CoMFA analysis of curcumine derivatives as HIV-1 integrase inhibitors. Mol Divers 15, 733–750 (2011). https://doi.org/10.1007/s11030-011-9304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-011-9304-7

Keywords

Navigation