Skip to main content

Advertisement

Log in

Discovery of a β-glucosidase inhibitor from a chemically engineered extract prepared through sulfonylation

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A semisynthetic β-glucosidase inhibitor was identified from a chemically engineered extract prepared by reaction with benzenesulfonyl chloride. The structure includes a natural histamine portion and a benzenesulfonyl portion introduced during the diversification step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lopez SN, Ramallo IA, Gonzalez Sierra Z, Zacchino SA, Furlan RLE (2007) Chemically engineered extracts as an alternative source of bioactive natural product-like compounds. Proc Natl Acad Sci USA 104: 441–444. doi:10.1073/pnas.0608438104

    Article  PubMed  CAS  Google Scholar 

  2. Di Liberto M, Svetaz L, Furlan RLE, Zacchino SA, Delporte C, Novoa MA, Asencio M, Cassels BK (2010) Antifungal activity of saponin-rich extracts of Phytolacca dioica and of the sapogenins obtained through hydrolysis. Nat Prod Commun 5: 1013–1018

    PubMed  CAS  Google Scholar 

  3. Mendez L, Salazar MO, Ramallo IA, Furlan RLE (2011) Brominated extracts as source of bioactive compounds. ACS Comb Sci. (in press). doi:10.1021/co100073k

  4. Salazar MO, Ramallo IA, Micheloni O, Gonzalez Sierra M, Furlan RLE (2009) Chemically engineered extracts: bioactivity alteration through sulphonylation. Bioorg Med Chem Lett 19: 5067–5070. doi:10.1016/j.bmcl.2009.07.038

    Article  PubMed  CAS  Google Scholar 

  5. Lillelund VH, Jensen HH, Liang X, Bols M (2002) Recent developments of transition-state analogue glycosidase inhibitors of non-natural product origin. Chem Rev 102: 515–553. doi:10.1021/cr000433k

    Article  PubMed  CAS  Google Scholar 

  6. Wagman AS, Nuss JM (2001) Current therapies and emerging targets for the treatment of diabetes. Curr Pharm Des 7: 417–450. doi:10.2174/1381612013397915

    Article  PubMed  CAS  Google Scholar 

  7. Asano N, Kato A, Watson AA (2001) Therapeutic applications of sugar-mimicking glycosidase inhibitors. Mini Rev Med Chem 1: 145–154. doi:10.2174/1389557013407052

    Article  PubMed  CAS  Google Scholar 

  8. Wen YM, Lin X, MaCurrent ZM (2003) Exploiting new potential targets for anti-hepatitis B virus drugs. Curr Drug Targets Infect Disord 3: 241–246. doi:10.2174/1568005033481141

    Article  PubMed  CAS  Google Scholar 

  9. Robina I, Moreno-Vargas AJ, Carmona AT, Vogel P (2004) Glycosidase inhibitors as potential HIV entry inhibitors. Curr Drug Metab 5: 329–361. doi:10.2174/1389200043335513

    Article  PubMed  CAS  Google Scholar 

  10. Asano N, Kizu H, Oseki K, Tomioka E, Matsui K, Okamoto M, Babat M (1995) N-alkylated nitrogen-in-the-ring sugars: conformational basis of inhibition of glycosidases and HW-1 replication. J Med Chem 38: 2349–2356. doi:10.1021/jm00013a012

    Article  PubMed  CAS  Google Scholar 

  11. Marston A, Kissling J, Hostettmann K (2002) A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem Anal 13: 51–54. doi:10.1002/pca.623

    Article  PubMed  CAS  Google Scholar 

  12. Ramallo IA, Zacchino SA, Furlan RLE (2006) Autographic method for the detection of xanthine oxidase inhibitors and superoxide scavengers. Phytochem Anal 17: 15–19. doi:10.1002/pca.874

    Article  PubMed  CAS  Google Scholar 

  13. Salazar MO, Furlan RLE (2007) Autographic method for the detection of glucosidase inhibitors. Phytochem Anal 18: 209–212. doi:10.1002/pca.971

    Article  PubMed  CAS  Google Scholar 

  14. Emmelin N, Feldberg W (1947) The mechanism of the sting of the common nettle (Urtica urens). J Physiol 106: 440–455

    CAS  Google Scholar 

  15. Field RA, Haines AH, Chrystal EJT, Luszniak MC (1991) Histidines, histamines and imidazoles as glycosidase inhibitors. Biochem J 274: 885–889

    PubMed  CAS  Google Scholar 

  16. Magdolen P, Vasella A (2005) Monocyclic, substituted imidazoles as glycosidase inhibitors. Helv Chim Acta 88: 2454–2469. doi:10.1021/jm800512z

    Article  CAS  Google Scholar 

  17. Li YK, Hsu HS, Chang LF, Chen G (1998) New imidazoles as probes of the active site topology and potent inhibitors of b-glucosidase. J Biochem 123: 416–422

    PubMed  CAS  Google Scholar 

  18. Wrodnigg TM, Diness F, Gruber C, Häusler H, Lundt I, Rupitz K, Steiner AJ, Stütz AE, Tarling CA., Withers SG, Wölfler H. (2004) Probing the aglycon binding site of a beta-glucosidase: a collection of C-1-modified 2,5-dideoxy-2,5-imino-D-mannitol derivatives and their structure-activity relationships as competitive inhibitors. Bioorg Med Chem 12: 3485–3495. doi:10.1016/j.bmc.2004.04.037

    Article  PubMed  CAS  Google Scholar 

  19. Viant MR (2003) Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochem Biophys Res Commun 310: 943–948. doi:10.1016/j.bbrc.2003.09.092

    Article  PubMed  CAS  Google Scholar 

  20. Daszykowski M, Serneels S, Kaczmarek K, Van Espen P, Croux C, Walczak B (2007) TOMCAT: a MATLAB toolbox for multivariate calibration techniques. Chemom Intell Lab Syst 85: 269–277. doi:10.1016/j.chemolab.2006.03.006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo L. E. Furlan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar, M.O., Micheloni, O., Escalante, A.M. et al. Discovery of a β-glucosidase inhibitor from a chemically engineered extract prepared through sulfonylation. Mol Divers 15, 713–719 (2011). https://doi.org/10.1007/s11030-010-9301-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-010-9301-2

Keywords

Navigation