Application of continuous flow and alternative energy devices for 5-hydroxymethylfurfural production

Abstract

Dehydration of fructose and glucose in dipolar, aprotic solvents leads to formation of 5-hydroxymethylfurfural. Conditions for continuous flow reactions using a cartridge-based reactor system and a stop-flow microwave reactor were established showing very good product yields and selectivity without the limitation of a batch process such as upscaling and precise temperature monitoring and control. A maximum product HPLC yield of 90.3% under cartridge-based heating and 85.6% under microwave heating could be achieved using mild and quick reaction conditions. Formation of levulinic acid as a by-product could not be detected under the optimized reaction conditions.

This is a preview of subscription content, log in to check access.

Abbreviations

DMSO:

Dimethylsulfoxide

HMF:

5-Hydroxymethylfurfural

HPLC:

High performance liquid chromatography

IL:

Ionic liquid

μW:

Microwave (conditions)

NHC:

N-heterocyclic carbene

PDA:

Photodiode array

RI:

Refractive index

TFA:

Trifluoroacetic acid

References

  1. 1

    Fayet C, Gelas J (1983) Nouvelle method de preparation du 5-hydroxyméthyl-2-furaldéhyde par action de sels d’ammonium ou d’immonium sur les mono-, oligo- et poly-saccharides. Accès direct aux 5-halogénométhyl-2-furaldehydes. Carbohydr Res 122: 59–68. doi:10.1016/0008-6215(83)88406-7

    Article  Google Scholar 

  2. 2

    Román-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447: 982–985. doi:10.1038/nature05923

    PubMed  Article  Google Scholar 

  3. 3

    Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316: 1597–1600. doi:10.1126/science.1141199

    PubMed  Article  CAS  Google Scholar 

  4. 4

    Sievers C, Musin I, Marzialetti T, Olarte MBV, Agarwal PK, Jones CW (2009) Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase. ChemSusChem 2: 665–671. doi:10.1002/cssc.200900092

    PubMed  Article  CAS  Google Scholar 

  5. 5

    Qi X, Watanabe M, Aida TM, Smith RL Jr (2009) Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chem 11: 1327–1331. doi:10.1039/b905975j

    Article  CAS  Google Scholar 

  6. 6

    Carniti P, Gervasini A, Biella S, Auroux A (2006) Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium: fructose dehydration reaction. Catal Today 118: 373–378. doi:10.1016/j.cattod.2006.07.024

    Article  CAS  Google Scholar 

  7. 7

    Yong G, Zhang Y, Ying JY (2008) Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose. Angew Chem Int Ed 47: 9345–9348. doi:10.1002/anie.200803207

    Article  CAS  Google Scholar 

  8. 8

    Hu S, Zhang Z, Thou Y, Han B, Fan H, Li W, Song J, Xie Y (2008) Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials. Green Chem 10: 1280–1283. doi:10.1039/b810392e

    Article  CAS  Google Scholar 

  9. 9

    Hansen TS, Woodley JM, Riisager A (2009) Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose. Carbohydr Res 344: 2568–2573. doi:10.1016/j.carres.2009.09.036

    PubMed  Article  CAS  Google Scholar 

  10. 10

    Li C, Zhang Z, Zhao ZK (2009) Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation. Tetrahedron Lett 50: 5403–5405. doi:10.1016/j.tetlet.2009.07.053

    Article  CAS  Google Scholar 

  11. 11

    Bicker M, Hirth J, Vogel H (2003) Dehydration of fructose to 5-hydroxymethylfurfural in sub- and supercritical acetone. Green Chem 5: 280–284. doi:10.1039/b211468b

    Article  CAS  Google Scholar 

  12. 12

    Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131: 1979–1985. doi:10.1021/ja808537j

    PubMed  Article  CAS  Google Scholar 

  13. 13

    Qi X, Watanabe M, Aida TM, Smith RL Jr (2009) Efficient catalytic conversion of fructose into 5-hydroxymethylfurfural in ionic liquids at room temperature. ChemSusChem 2: 944–946. doi:10.1002/cssc.200900199

    PubMed  Article  CAS  Google Scholar 

  14. 14

    Chheda JN, Román-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9: 342–350. doi:10.1039/b611568c

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marko D. Mihovilovic.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 72.2 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schön, M., Schnürch, M. & Mihovilovic, M.D. Application of continuous flow and alternative energy devices for 5-hydroxymethylfurfural production. Mol Divers 15, 639–643 (2011). https://doi.org/10.1007/s11030-010-9295-9

Download citation

Keywords

  • Flow chemistry
  • Carbohydrate dehydration
  • 5-Hydroxymethylfurfural
  • Cartridge-based reactors
  • Stopped-flow microwave