Molecular Diversity

, Volume 15, Issue 3, pp 639–643 | Cite as

Application of continuous flow and alternative energy devices for 5-hydroxymethylfurfural production

  • Michael Schön
  • Michael Schnürch
  • Marko D. Mihovilovic
Full-Length Paper

Abstract

Dehydration of fructose and glucose in dipolar, aprotic solvents leads to formation of 5-hydroxymethylfurfural. Conditions for continuous flow reactions using a cartridge-based reactor system and a stop-flow microwave reactor were established showing very good product yields and selectivity without the limitation of a batch process such as upscaling and precise temperature monitoring and control. A maximum product HPLC yield of 90.3% under cartridge-based heating and 85.6% under microwave heating could be achieved using mild and quick reaction conditions. Formation of levulinic acid as a by-product could not be detected under the optimized reaction conditions.

Keywords

Flow chemistry Carbohydrate dehydration 5-Hydroxymethylfurfural Cartridge-based reactors Stopped-flow microwave 

Abbreviations

DMSO

Dimethylsulfoxide

HMF

5-Hydroxymethylfurfural

HPLC

High performance liquid chromatography

IL

Ionic liquid

μW

Microwave (conditions)

NHC

N-heterocyclic carbene

PDA

Photodiode array

RI

Refractive index

TFA

Trifluoroacetic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11030_2010_9295_MOESM1_ESM.pdf (72 kb)
ESM 1 (PDF 72.2 kb)

References

  1. 1.
    Fayet C, Gelas J (1983) Nouvelle method de preparation du 5-hydroxyméthyl-2-furaldéhyde par action de sels d’ammonium ou d’immonium sur les mono-, oligo- et poly-saccharides. Accès direct aux 5-halogénométhyl-2-furaldehydes. Carbohydr Res 122: 59–68. doi:10.1016/0008-6215(83)88406-7 CrossRefGoogle Scholar
  2. 2.
    Román-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447: 982–985. doi:10.1038/nature05923 PubMedCrossRefGoogle Scholar
  3. 3.
    Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316: 1597–1600. doi:10.1126/science.1141199 PubMedCrossRefGoogle Scholar
  4. 4.
    Sievers C, Musin I, Marzialetti T, Olarte MBV, Agarwal PK, Jones CW (2009) Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase. ChemSusChem 2: 665–671. doi:10.1002/cssc.200900092 PubMedCrossRefGoogle Scholar
  5. 5.
    Qi X, Watanabe M, Aida TM, Smith RL Jr (2009) Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chem 11: 1327–1331. doi:10.1039/b905975j CrossRefGoogle Scholar
  6. 6.
    Carniti P, Gervasini A, Biella S, Auroux A (2006) Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium: fructose dehydration reaction. Catal Today 118: 373–378. doi:10.1016/j.cattod.2006.07.024 CrossRefGoogle Scholar
  7. 7.
    Yong G, Zhang Y, Ying JY (2008) Efficient catalytic system for the selective production of 5-hydroxymethylfurfural from glucose and fructose. Angew Chem Int Ed 47: 9345–9348. doi:10.1002/anie.200803207 CrossRefGoogle Scholar
  8. 8.
    Hu S, Zhang Z, Thou Y, Han B, Fan H, Li W, Song J, Xie Y (2008) Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials. Green Chem 10: 1280–1283. doi:10.1039/b810392e CrossRefGoogle Scholar
  9. 9.
    Hansen TS, Woodley JM, Riisager A (2009) Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose. Carbohydr Res 344: 2568–2573. doi:10.1016/j.carres.2009.09.036 PubMedCrossRefGoogle Scholar
  10. 10.
    Li C, Zhang Z, Zhao ZK (2009) Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation. Tetrahedron Lett 50: 5403–5405. doi:10.1016/j.tetlet.2009.07.053 CrossRefGoogle Scholar
  11. 11.
    Bicker M, Hirth J, Vogel H (2003) Dehydration of fructose to 5-hydroxymethylfurfural in sub- and supercritical acetone. Green Chem 5: 280–284. doi:10.1039/b211468b CrossRefGoogle Scholar
  12. 12.
    Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131: 1979–1985. doi:10.1021/ja808537j PubMedCrossRefGoogle Scholar
  13. 13.
    Qi X, Watanabe M, Aida TM, Smith RL Jr (2009) Efficient catalytic conversion of fructose into 5-hydroxymethylfurfural in ionic liquids at room temperature. ChemSusChem 2: 944–946. doi:10.1002/cssc.200900199 PubMedCrossRefGoogle Scholar
  14. 14.
    Chheda JN, Román-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9: 342–350. doi:10.1039/b611568c CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Michael Schön
    • 1
  • Michael Schnürch
    • 1
  • Marko D. Mihovilovic
    • 1
  1. 1.Institute for Applied Synthetic ChemistryVienna University of TechnologyViennaAustria

Personalised recommendations