Skip to main content

Advertisement

Log in

Metal-free activation of H2O2 by synergic effect of ionic liquid and microwave: chemoselective oxidation of benzylic alcohols to carbonyls and unexpected formation of anthraquinone in aqueous condition

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

H2O2 mediated oxidation of alcohols in ionic liquid is revisited, wherein, ionic liquids under the influence of microwave irradiation have been found to facilitate activation of H2O2 without any metal catalyst in aqueous condition. The method utilizes a neutral ionic liquid [hmim]Br both as catalyst and solvent for efficient and chemoselective oxidation of benzyl alcohol derivatives on aromatic (β, γ) alcohols, cyclic and aliphatic analogues, which can be a useful synthetic approach in total synthesis of complex organic compounds/natural products. Moreover, an unexpected oxidation of 9-anthracenyl propanol, a polyaromatic benzyl alcohol, resulting in the formation of 9,10-anthraquinone by the loss of propyl side chain was observed. Plausible mechanism and further exploration of this method on various other related substrates are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breslow R (1998) In: Anastas PT, Williamson TC (eds) Green chemistry, frontiers in benign chemical synthesis and processes. Oxford University Press, Oxford, pp 225–233

  2. Sheldon RA, Kochi JK (1981) Metal catalysed oxidations of organic compounds. Academic Press, London

    Google Scholar 

  3. Stahl SS (2004) Palladium oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover. Angew Chem Int Ed 43: 3400–3420

    Article  CAS  Google Scholar 

  4. March J (1992) Advance organic chemistry: reaction, mechanisms and structure, 4th edn. Wiley, New York

    Google Scholar 

  5. Mannam S, Alamsetti SK, Sekar G (2007) Aerobic, chemoselective oxidation of alcohols to carbonyl compounds catalyzed by a DABCO-copper complex under mild conditions. Adv Synth Catal 349: 2253–2258

    Article  CAS  Google Scholar 

  6. Zhu M, Li B, He P, Wei X, Yuan Y (2008) Oxidant-dependent selective oxidation of alcohols utilizing multinuclear copper-triethanolamine complexes. Tetrahedron 64: 9239–9243

    Article  CAS  Google Scholar 

  7. Sarmah P, Chakrabarty R, Phukan P, Das BK (2007) Selective oxidation of alcohols catalysed by a cubane-like Co(III) oxo cluster immobilised on porous organomodified silica. J Mol Catal A: Chem 268: 36–44

    Article  CAS  Google Scholar 

  8. Ezabadi A, Najafi GR, Hashemi MM (2008) A green and efficient oxidation of benzylic alcohols using H2O2 catalyzed by montmorillonite K-10 supported CoCl2. Chin Chem Lett 19: 1277–1280

    Article  CAS  Google Scholar 

  9. Dijksman A, Gonzalez AM, Payeras AM, Arends IWCE, Sheldon RA (2001) Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system. J Am Chem Soc 123: 6826–6833

    Article  PubMed  CAS  Google Scholar 

  10. Ji HB, Yuan QL, Zhou XT, Pei LX, Wang LF (2007) Highly efficient selective oxidation of alcohols to carbonyl compounds catalyzed by ruthenium (III) meso-tetraphenylporphyrin chloride in the presence of molecular oxygen. Bioorg Med Chem Lett 17: 6364–6368

    Article  PubMed  CAS  Google Scholar 

  11. Muzart J (2003) Palladium-catalysed oxidation of primary and secondary alcohols. Tetrahedron 59: 5789–5816

    Article  CAS  Google Scholar 

  12. Shimazu S, Uehara T, Asami A, Hara T, Ichikuni N (2008) Highly efficient alcohol oxidation catalyzed by palladium(II)–alkylamine complexes using atmospheric molecular oxygen. J Mol Catal A: Chem 282: 28–33

    Article  CAS  Google Scholar 

  13. Caron S, Dugger RW, Ruggeri SG, Ragan JA, Ripin DHB (2006) Large-scale oxidations in the pharmaceutical industry. Chem Rev 106: 2943–2989

    Article  PubMed  CAS  Google Scholar 

  14. Krishnaveni NS, Surendra K, Rao KR (2004) A simple and highly selective biomimetic oxidation of alcohols and epoxides with N-bromosuccinimide in the presence of β-cyclodextrin in water. Adv Synth Catal 346: 346–350

    Article  CAS  Google Scholar 

  15. Gogoi P, Konwar D (2005) Transition-metal- and organic-solvent-free: a highly efficient anaerobic process for selective oxidation of alcohols to aldehydes and ketones in water. Org Biomol Chem 3: 3473–3475

    Article  PubMed  CAS  Google Scholar 

  16. Lenoir D (2006) Selective oxidation of organic compounds-sustainable catalytic reactions with oxygen and without transition metals. Angew Chem Int Ed 45: 3206–3210

    Article  CAS  Google Scholar 

  17. Lei Z, Yang Y, Bai X (2006) Catalyst-free oxidation of alcohols at room temperature using water as solvent. Adv Synth Catal 348: 877–880

    Article  CAS  Google Scholar 

  18. Lou JD, Ma YC, Zhang YJ, Gao CL (2006) Solvent-free selective oxidation of alcohols with potassium permanganate adsorbed on graphite by shaking. Synth React Inorg Met Org Chem 36: 317–319

    Article  CAS  Google Scholar 

  19. Jain SL, Sain B (2006) Efficient transition-metal-free oxidation of benzylic and secondary alcohols to the carbonyl compounds using an N-bromosuccinimide/NH4Cl system. Synth Commun 36: 1459–1462

    Article  CAS  Google Scholar 

  20. Zolfigol MA, Shirini F, Chehardoli G, Kolvari E (2007) A catalytic and transition metal-free method for the chemoselective oxidation of alcohols to their corresponding carbonyl compounds using periodic acid or iodic acid in the presence of a catalytic amount of KBr. J Mol Catal A: Chem 265: 272–275

    Article  CAS  Google Scholar 

  21. Jiang N, Ragauskas AJ (2005) TEMPO-catalyzed oxidation of benzylic alcohols to aldehydes with the H2O2/HBr/ionic liquid [bmim]PF6 system. Tetrahedron Lett 46: 3323–3326

    Article  CAS  Google Scholar 

  22. Karimi B, Biglari A, Clark JH, Budarin V (2007) Green, transition-metal-free aerobic oxidation of alcohols using a highly durable supported organocatalyst. Angew Chem Int Ed 46: 7210–7213

    Article  CAS  Google Scholar 

  23. He X, Shen Z, Mo W, Sun N, Hu B, Hu X (2009) TEMPO-tert-butyl nitrite: an efficient catalytic system for aerobic oxidation of alcohols. Adv Synth Catal 351: 89–92

    Article  CAS  Google Scholar 

  24. Takenaga N, Goto A, Yoshimura M, Fujioka H, Dohi T, Kita Y (2009) Hypervalent iodine(III)/Et 4N+Br combination in water for green and racemization-free aqueous oxidation of alcohols. Tetrahedron Lett 50: 3227–3229

    Article  CAS  Google Scholar 

  25. Uyanik M, Akakura M, Ishihara K (2009) 2-Iodoxybenzenesulfonic acid as an extremely active catalyst for the selective oxidation of alcohols to aldehydes, ketones, carboxylic acids, and enones with oxone. J Am Chem Soc 131: 251–262

    Article  PubMed  CAS  Google Scholar 

  26. Li X-Q, Wang W-K, Zhang C (2009) One-pot synthesis of carbamoyl azides directly from primary alcohols and oxidation of secondary alcohols to ketones using iodobenzene dichloride in combination with sodium azide. Adv Synth Catal 351: 2342–2350

    Article  CAS  Google Scholar 

  27. Martin JMC, Brieva GB, Fierro JLG (2006) Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed 45: 6962–6984

    Article  Google Scholar 

  28. Ingle RH, Raj NKK, Manikandan P (2007) [SbW9O33]-based polyoxometalate combined with a phase transfer catalyst: a highly effective catalyst system for selective oxidation of alcohols with H2O2, and spectroscopic investigation. J Mol Catal A: Chem 262: 52–58

    Article  CAS  Google Scholar 

  29. Zhang S, Zhao G, Gao S, Xi Z, Xu J (2008) Secondary alcohols oxidation with hydrogen peroxide catalyzed by [n−C16H33N(CH3)3]3PW12O40: Transform-and-retransform process between catalytic precursor and catalytic activity species. J Mol Catal A: Chem 289: 22–27

    Article  CAS  Google Scholar 

  30. Hida T, Nogusa H (2009) Practical and versatile oxidation of alcohol using novel Na2WO4–H2O2 system under neutral conditions. Tetrahedron 65: 270–274

    Article  CAS  Google Scholar 

  31. Chhikara BS, Chandra R, Tandon V (2005) Oxidation of alcohols with hydrogen peroxide catalyzed by a new imidazolium ion based phosphotungstate complex in ionic liquid. J Catal 230: 436–439

    Article  CAS  Google Scholar 

  32. Muzart J (2006) Ionic liquids as solvents for catalyzed oxidations of organic compounds. Adv Synth Catal 348: 275–295

    Article  CAS  Google Scholar 

  33. Kumar A, Jain N, Chauhan SMS (2004) Oxidation of benzylic alcohols to carbonyl compounds with potassium permanganate in ionic liquids. Synth Commun 34: 2835–2842

    Article  CAS  Google Scholar 

  34. Hajipour AR, Rafiee F, Ruoho AE (2006) Oxidation of benzylic alcohols to their corresponding carbonyl compounds using KIO4 in ionic liquid by microwave irradiation. Synth Commun 36: 2563–2568

    Article  CAS  Google Scholar 

  35. Rong M, Liu C, Han J, Wang H (2009) Catalytic oxidation of alcohols by a double functional ionic liquid [bmim]BF4. Catal Commun 10: 362–364

    Article  CAS  Google Scholar 

  36. Sharma UK, Sharma N, Kumar R, Kumar R, Sinha AK (2009) Biocatalytic promiscuity of lipase in chemoselective oxidation of aryl alcohols/acetates: a unique synergism of CAL-B and [hmim]Br for the metal-free H2O2 activation. Org Lett 11: 4846–4848

    Article  PubMed  CAS  Google Scholar 

  37. Wasserscheid, P, Welton, T (eds) (2003) Ionic liquids in synthesis. Willey-VCH, Weinheim

    Google Scholar 

  38. Pearson AJ, Kwak Y (2005) A new method for the selective oxidation of allylic and benzylic alcohols. Tetrahedron Lett 46: 5417–5419

    Article  CAS  Google Scholar 

  39. Kumar R, Sharma A, Sharma N, Kumar V, Sinha AK (2008) Neutral ionic liquid [hmim]Br as a green reagent and solvent for the mild and efficient dehydration of benzyl alcohols into (E)-arylalkenes under microwave irradiation. Eur J Org Chem 2008: 5577–5582

    Article  Google Scholar 

  40. Sharma A, Kumar R, Sharma N, Kumar V, Sinha AK (2008) Unique versatility of ionic liquids as clean decarboxylation catalyst cum solvent: a metal- and quinoline-free paradigm towards synthesis of indoles, styrenes, stilbenes and arene derivatives under microwave irradiation in aqueous conditions. Adv Synth Catal 350: 2910–2920

    Article  CAS  Google Scholar 

  41. Sharma A, Sharma N, Kumar R, Sharma UK, Sinha AK (2009) Water-promoted cascade synthesis of α-arylaldehydes from arylalkenes using N-halosuccinimides: an avenue for asymmetric oxidation using Cinchona organocatalysis. Chem Commun 5299–5301

  42. Sharma A, Sharma N, Kumar R, Shard A, Sinha AK (2010) Direct olefination of benzaldehydes into hydroxy functionalized oligo (p-phenylenevinylene)s via Pd-catalyzed heterodomino Knoevenagel-decarboxylation-Heck sequence and its application for fluoride sensing π-conjugated units. Chem Commun 46: 3283–3285

    Article  CAS  Google Scholar 

  43. Becker HD, Bjoerk A, Adler E (1980) Quinone dehydrogenation. Oxidation of benzylic alcohols with 2,3-dichloro-5,6-dicyanobenzoquinone. J Org Chem 45: 1596–1600

    Article  CAS  Google Scholar 

  44. Alvarez HM, de Andrade JL, Pereira N Jr, Muri EMF, Horn A Jr, Barbosa DP, Antunes OAC (2007) Catalytic oxidation of isosafrol by vanadium complexes. Catal Commun 8: 1336–1340

    Article  CAS  Google Scholar 

  45. Xiao Y, Huang H, Yin D, Guo D, Mao L, Fu Z (2008) Oxidation of anethole with hydrogen peroxide catalyzed by oxovanadium aromatic carboxylate complexes. Catal Commun 10: 29–32

    Article  CAS  Google Scholar 

  46. Bernini R, Coratti A, Provenzano G, Fabrizi G, Tofani D (2005) Oxidation of aromatic aldehydes and ketones by H2O2/CH3ReO3 in ionic liquids: a catalytic efficient reaction to achieve dihydric phenols. Tetrahedron 61: 1821–1825

    Article  CAS  Google Scholar 

  47. Roy A, Reddy KR, Mohanta PK, Ila H, Junjappa H (1999) Hydrogen peroxide/boric acid: an efficient system for oxidation of aromatic aldehydes and ketones to phenols. Synth Commun 29: 3781–3791

    Article  CAS  Google Scholar 

  48. Lukasiewicz M, Bogdal D, Pielichowski J (2006) Microwave assisted oxidation of some aromatics by hydrogen peroxide at supported tungsten catalyst. Mol Divers 10: 491–493

    Article  PubMed  CAS  Google Scholar 

  49. Suzuki A, Hasegawa M, Ishii M, Matsumura S, Toshima K (2005) Anthraquinone derivatives as a new family of protein photocleavers. Bioorg Med Chem Lett 15: 4624–4627

    Article  PubMed  CAS  Google Scholar 

  50. Hossein N, Roozbeh N (2009) Rapid, efficient and one pot synthesis of anthraquinone derivatives catalyzed by Lewis acid/methanesulfonic acid under heterogeneous conditions. Dyes Pigm 81: 259–263

    Article  Google Scholar 

  51. Sharma A, Joshi BP, Sinha AK (2004) An effective system to synthesize hypolipidemic active α-asarone and related methoxylated (E)-arylalkenes. Bull Chem Soc Jpn 77: 2231–2235

    Article  CAS  Google Scholar 

  52. Botteghi C, Paganelli S, Moratti F, Marchetti M, Lazzaroni R, Settambolo R, Piccolo O (2003) Synthesis of 2-chromanol by hydroformylation of 2-hydroxystyrene derivatives. J Mol Cat A: Chem 200: 147–156

    Article  CAS  Google Scholar 

  53. Nockemann P, Binnemans K, Driesen K (2005) Purification of imidazolium ionic liquids for spectroscopic applications. Chem Phys Lett 415: 131–136

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Sinha.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 2,650 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Sharma, N., Sharma, N. et al. Metal-free activation of H2O2 by synergic effect of ionic liquid and microwave: chemoselective oxidation of benzylic alcohols to carbonyls and unexpected formation of anthraquinone in aqueous condition. Mol Divers 15, 687–695 (2011). https://doi.org/10.1007/s11030-010-9292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-010-9292-z

Keywords

Navigation