Skip to main content

Advertisement

Log in

Synthesis and properties of small interfering RNA duplexes carrying 5-ethyluridine residues

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Oligoribonucleotides carrying 5-ethyluridine units were prepared using solid-phase phosphoramidite chemistry. The introduction of the tert-butyldimethylsilyl group at the 2′-OH position proceeded in good yield and very high 2′-regioselectivity. RNA duplexes carrying 5-ethyluridine either at the sense or the guide strands display RNAi activity comparable to or slightly better than that of unmodified RNA duplexes. Gene suppression experiments using luciferase targets in SH-SY5Y cells show that the ethyl group is generally well accepted at all positions although a small decrease in RNA interference activity is observed when one 5-ethylU residue is incorporated in the 3′ overhangs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

as:

Guide (antisense) strand

ACN:

Acetonitrile

DIPEA:

N,N-diisopropylethylamine

DMAP:

N,N-dimethylaminopyridine

DMEM:

Dulbecco’s modified Eagle medium

DMT:

4,4′-Dimethoxytrityl

EtOAc:

Ethyl acetate

FBS:

Fetal bovine serum

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

MeOH:

Methanol

siRNA:

Small interfering RNA

ss:

Sense strand

TBAF:

Tetrabutylammonium fluoride

TBDMS:

tert-Butyldimethylsilyl

TEAA:

Triethylammonium acetate

References

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811. doi:10.1038/35888

    Article  PubMed  CAS  Google Scholar 

  2. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494–498. doi:10.1038/35078107

    Article  PubMed  CAS  Google Scholar 

  3. Behlke MA (2008) Chemical modification of siRNA for in vivo use. Oligonucleotides 18: 305–320. doi:10.1089/oli.2008.0164

    Article  PubMed  CAS  Google Scholar 

  4. Watts JK, Deleavey GF, Damha MJ (2008) Chemically modified siRNA: tools and applications. Drug Discov Today 13: 842–855. doi:10.1016/j.drudis.2008.05.007

    Article  PubMed  CAS  Google Scholar 

  5. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago-2 containing RNAi enzyme complexes. Cell 123: 607–620. doi:10.1016/j.cell.2005.08.044

    Article  PubMed  CAS  Google Scholar 

  6. Bramsen JB, Laursen MB, Nielsen AF, Hansen TB, Bus C, Lankjaer N, Babu BR, Hojland T, Abramov M, van Aerschot A, Odadzic D, Smicius R, Haas J, Andree C, Barman J, Wenska M, Srivastava P, Zhou C, Honcharenko D, Hess S, Múller E, Bobkov GV, Mikhailov SN, Fava E, Meyer TF, Chatopadhyaya J, Zerial M, Engels JW, Herdewijn P, Wengel J, Kjems J. (2009) A large-scale chemical modification screen identifies design rules to generate siRNAs with high stability and low toxicity. Nucleic Acids Res 37: 2867–2881. doi:10.1093/nar/gkp106

    Article  PubMed  CAS  Google Scholar 

  7. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6: 443–453. doi:10.1038/nrd2310

    Article  PubMed  Google Scholar 

  8. de Martimprey H, Vauthier C, Malvy C, Couvreur P (2009) Polymer nanocarriers for the delivery of small fragments of nucleic acids: oligonucleotides and siRNA. Eur J Pharm Biopharm 71: 490–504. doi:10.1016/j.ejpb.2008.09.024

    Article  PubMed  Google Scholar 

  9. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Röhl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432: 173–178. doi:10.1038/nature03121

    Article  PubMed  CAS  Google Scholar 

  10. Said Hassane F, Saleh AF, Abes R, Gait MJ, Lebleu B (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 67:715–726. doi:10.1007/s00018-009-0186-0

    Google Scholar 

  11. Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (2009) Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 131: 2072–2073. doi:10.1021/ja808719p

    Article  PubMed  CAS  Google Scholar 

  12. Chiu YL, Rana TM (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9: 1034–1048. doi:10.1261/rna.5103703

    Article  PubMed  CAS  Google Scholar 

  13. Parrish S, Fleenor J, Xu SQ, Mello C, Fire A (2000) Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell 6: 1077–1087. doi:10.1016/S1097-2765(00)00106-4

    Article  PubMed  CAS  Google Scholar 

  14. Sipa K, Sochacka E, Kazmierczak-Baranska J, Maszewska M, Janicka M, Nowak G, Nawrot B (2007) Effect of base modifications on structure, thermodynamic stability, and gene silencing activity of short interfering RNA. RNA 13: 1301–1316. doi:10.1261/rna.538907

    Article  PubMed  CAS  Google Scholar 

  15. Somoza A, Chelliserrykattil J, Kool ET (2006) The roles of hydrogen bonding and sterics in RNA interference. Angew Chem Int Edn 45: 4994–4997. doi:10.1002/anie.200601311

    Article  CAS  Google Scholar 

  16. Xia J, Noronha A, Toudjarska I, Li F, Akinc A, Braich R, Frank-Kamenetsky M, Rajeev KG, Egli M, Manoharan M (2006) Gene silencing activity of siRNAs with a ribo-difluorotoluyl nucleotide. ACS Chem Biol 1: 176–183. doi:10.1021/cb600063p

    Article  PubMed  CAS  Google Scholar 

  17. Somoza A, Silverman AP, Miller RM, Chelliserrykattil J, Kool ET (2008) Steric Effects in RNA interference: probing the influence of nucleobase size and shape. Chem Eur J 14: 7978–7987. doi:10.1002/chem.200800837

    Article  CAS  Google Scholar 

  18. Terrazas M, Kool ET (2009) RNA major groove modifications improve siRNA stability and biological activity. Nucleic Acids Res 37: 346–353. doi:10.1093/nar/gkn958

    Article  PubMed  CAS  Google Scholar 

  19. Bergstrom DE, Ruth JL (1976) Synthesis of C-5 substituted pyrimidine nucleosides via organopalladium intermediates. J Am Chem Soc 98: 1587–1589. doi:10.1021/ja00422a056

    Article  PubMed  CAS  Google Scholar 

  20. Bergstrom DE, Ogawa MK (1978) C-5 Substituted pyrimidine nucleosides. 2. Synthesis via olefin coupling to organopalladium intermediates derived from uridine and 2′-deoxyuridine. J Am Chem Soc 100: 8106–8112. doi:10.1021/ja00494a014

    Article  CAS  Google Scholar 

  21. Shapira J (1962) Synthesis of 5-ethyluridine, a model 5-alkylsubstituted pyrimidine nucleoside. J Org Chem 27: 1918–1919. doi:10.1021/jo01052a528

    Article  CAS  Google Scholar 

  22. Niedballa U, Vorbrüggen H (1974) Synthesis of nucleosides, 9, General synthesis of N-glycosides. I. Synthesis of pyrimidine nucleosides. J Org Chem 39: 3654–3660. doi:10.1021/jo00939a008

    Article  PubMed  CAS  Google Scholar 

  23. Herdewijn P, Kerremans L, Wigerinck P, Vandendriessche F, van Aerschot A (1991) Synthesis of thymidine from 5-iodo-2′-deoxyuridine. Tetrahedron Lett 32: 4397–4400. doi:10.1016/S0040-4039(00)92180-4

    Article  CAS  Google Scholar 

  24. Hakimelahi GH, Proba ZA, Ogilvie KK (1982) New catalysts and procedures for the dimethoxytritylation and selective silylation of ribonucleosides. Can J Chem 60: 1106–1113. doi:10.1139/v82-165

    Article  CAS  Google Scholar 

  25. Harborth J, Elbashir SM, Vandenburgh K, Manninga H, Scaringe SA, Weber K, Tuschl T (2003) Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic A 13: 83–105. doi:10.1089/108729003321629638

    Article  CAS  Google Scholar 

  26. Hayakawa T, Ono A, Ueda T (1988) Synthesis of decadeoxyribonucleotides containing 5-modified uracils and their interactions with restriction endonucleases BglII, Sau3AI and MboI. Nucleic Acids Res 16: 4761–4776. doi:10.1093/nar/16.11.4761

    Article  PubMed  CAS  Google Scholar 

  27. Kypr J, Sági J, Szakonyi E, Ebinger K, Penazová H, Chládkova J, Vorlícková M (1994) Thymine methyl groups stabilize the putative A-form of the synthetic DNA poly(amino 2 dA-dT). Biochemistry-US 33: 3801–3806. doi:10.1021/bi00179a003

    Article  CAS  Google Scholar 

  28. Marzabal S, DuBois S, Thielking V, Cano A, Eritja R, Guschlbauer W (1995) Dam methylase from Escherichia coli: kinetic studies using modified DNA oligomers: hemimethylated substrates. Nucleic Acids Res 23: 3648–3655. doi:10.1093/nar/23.18.3648

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Eritja.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 2125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terrazas, M., Eritja, R. Synthesis and properties of small interfering RNA duplexes carrying 5-ethyluridine residues. Mol Divers 15, 677–686 (2011). https://doi.org/10.1007/s11030-010-9290-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-010-9290-1

Keywords

Navigation