Skip to main content

Advertisement

Log in

Design, synthesis and 3D-QSAR study of cytotoxic flavonoid derivatives

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Three series of flavonoid derivatives were designed and synthesized. All synthesized compounds were evaluated for cytotoxic activities against five human cancer cell lines, including K562, PC-3, MCF-7, A549, and HO8910. Among the compounds tested, compound 9d exhibited the most potent cytotoxic activity with IC50 values of 2.76–6.98μM. Further comparative molecular field analysis was performed to conduct a 3D quantitative structure–activity relationship study. The generated 3D-QSAR model could be used for further rational design of novel flavonoid analogs as highly potent cytotoxic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Middleton EJ, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52: 673–751

    PubMed  CAS  Google Scholar 

  2. Suresh Babu K, Hari Babu T, Srinivas PV, Kishore KH, Murthy USN, Rao JM (2006) Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bioorg Med Chem Lett 16: 221–224. doi:10.1016/j.bmcl.2005.09.009

    Article  PubMed  CAS  Google Scholar 

  3. Khlebnikov AI, Schepetkin IA, Domina NG, Kirpotina LN, Quinn MT (2007) Improved quantitative structure–activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorg Med Chem 15: 1749–1770. doi:10.1016/j.bmc.2006.11.037

    Article  PubMed  CAS  Google Scholar 

  4. Park H, Dao TT, Kim HP (2005) Synthesis and inhibition of PGE2 production of 6,8-disubstituted chrysin derivatives. Eur J Med Chem 40: 943–948. doi:10.1016/j.ejmech.2005.04.013

    Article  PubMed  CAS  Google Scholar 

  5. Nakagawa-Goto K, Bastow KF, Chen TH, Morris-Natschke SL, Lee KH (2008) Antitumor agents 260. new desmosdumotin B analogues with improved in vitro anticancer. J Med Chem 51: 3297–3303. doi:10.1021/jm701208v

    Article  PubMed  CAS  Google Scholar 

  6. Cárdenas M, Marder M, Blank VC, Roguin LP (2006) Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines. Bioorg Med Chem 14: 2966–2971. doi:10.1016/j.bmc.2005.12.021

    Article  PubMed  Google Scholar 

  7. Wang CL, Li HQ, Meng WD, Qing FL (2005) Trifluoromethylation of flavonoids and anti-tumor activity of the trifluoromethylated flavonoid derivatives. Bioorg Med Chem Lett 15: 4456–4458. doi:10.1016/j.bmcl.2005.07.047

    Article  PubMed  CAS  Google Scholar 

  8. Tundis R, Deguin B, Loizzo MR, Bonesi M, Statti GA, Tillequinb F. Menichini F, Menichini F (2005) Potential antitumor agents: flavones and their derivatives from Linaria reflexa Desf. Bioorg Med Chem Lett 15: 4757–4760. doi:10.1016/j.bmcl.2005.07.029

    Article  PubMed  CAS  Google Scholar 

  9. Bauvois B, Puiffe ML, Bongui JB, Paillat S, Monneret C, Dauzonne D (2003) Synthesis and biological evaluation of novel flavone-8-acetic acid derivatives as reversible inhibitors of aminopeptidase N/CD13. J Med Chem 46: 3900–3913. doi:10.1021/jm021109f

    Article  PubMed  CAS  Google Scholar 

  10. Wätjen W, Suckow-Schnitker AK, Rohrig R, Kulawik A, Addae-Kyereme J, Wright CW, Passreiter CM (2008) Prenylated flavonoid derivatives from the bark of Erythrina addisoniae. J Nat Prod 71: 735–738. doi:10.1021/np070417j

    Article  PubMed  Google Scholar 

  11. Yoder BJ, Cao SG, Norris A, Miller JS, Ratovoson F, Razafitsalama J, Andriantsiferana R, Rasamison VE, Kingston DGI (2007) Antiproliferative prenylated stilbenes and flavonoids from macaranga alnifolia from the madagascar rainforest. J Nat Prod 70: 342–346. doi:10.1021/np060484y

    Article  PubMed  CAS  Google Scholar 

  12. Wätjen W, Weber N, Lou YJ, Wang ZQ, Chovolou Y, Kampkötter A, Kahl R, Proksch P (2007) Prenylation enhances cytotoxicity of apigenin and liquiritigeninin rat H4IIE hepatoma and C6 glioma cells. Food Chem Toxicol 45: 119–124. doi:10.1016/j.fct.2006.08.008

    Article  PubMed  Google Scholar 

  13. Roelens F, Heldring N, Dhooge W, Bengtsson M, Comhaire F, Gustafsson JÅ, Treuter E, Keukeleire DD (2006) Subtle side-chain modifications of the hop phytoestrogen 8-prenylnaringenin result in distinct agonist/antagonist activity profiles for estrogen receptors α and β. J Med Chem 49: 7357–7365. doi:10.1021/jm060692n

    Article  PubMed  CAS  Google Scholar 

  14. Maitrejea M, Comte G, Barron D, Kirat KE, Conseil G, Pietro AD (2000) The flavanolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of P-Glycoprotein. Bioorg Med Chem Lett 10: 157–160. doi:10.1016/S0960-894(99)00636-8

    Article  Google Scholar 

  15. Lin AS, Nakagawa-Goto K, Chang FR, Yu DL, Morris-Natschke SL, Wu CC, Chen SL, Wu YC, Lee KH (2007) First total synthesis of protoapigenone and its analogues as potent cytotoxic agents. J Med Chem 50: 3921–3927. doi:10.1021/jm070363a

    Article  PubMed  CAS  Google Scholar 

  16. Gulati KC, Seth SR, Venkataraman K (1943) Phloroacetophenone. Org Synth 2: 522–523

    Google Scholar 

  17. Juntend KYT, Junte TST (1988) Anti-ulcerous agent containing chalcone derivative as effective ingredient and novel chalcone derivatives. Patent EP 292576

  18. Bu X, Zhao L, Li Y (1997) A facile synthesis of 6-C-Prenylflavanones. Synthesis 11: 1246–1248. doi:10.1055/s-1997-1348

    Article  Google Scholar 

  19. Schwaebe MK, Moran TJ, Whitten JP (2005) Total synthesis of psorospermin. Tetrahedron Lett 46: 827–829. doi:10.1016/j.tetlet.2004.12.006

    Article  CAS  Google Scholar 

  20. Quintin J, Roullier C, Thoret S, Lewin G (2006) Synthesis and anti-tubulin evaluation of chromone-based analogues of combretastatins. Tetrahedron 62: 4038–4051. doi:10.1016/j.tet.2006.02.024

    Article  CAS  Google Scholar 

  21. Ho DK, McKenzie AT, Byrn SR, Cassady JM (1987) O5-Methyl-(±)-(2′R, 3′S)-psorospermin. J Org Chem 52: 342–347. doi:10.1021/jo00379a005

    Article  CAS  Google Scholar 

  22. Meza-Avina ME, Ordonez M, Fernandez-Zertuche M, Rodriguez- Fragoso L, Reyes-Esparza J, de Los Rios-Corsino AA (2005) Synthesis of some monocyclic analogues of mycophenolic acid via the Johnson ortho ester Claisen rearrangement. Bioorg Med Chem 13: 6521–6528. doi:10.1016/j.bmc.2005.07.013

    Article  PubMed  CAS  Google Scholar 

  23. Guo X, Hu W, Cheng S, Wang L, Chang J (2006) Synthesis of novel murrapanine analogues by microwave irradiation. Syn Commun 36: 781–788. doi:10.1080/00397910500451159

    Article  CAS  Google Scholar 

  24. Solladié G, Gehrold N, Maignan J (1999) Synthesis of (+)-(R)-5-hydroxy-6-hydroxymethyl-7-methoxy-8- methylflavanone. Tetrahedron Asymmetry 10: 2739–2747. doi:10.1016/S0957-4166(99)00266-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Zhong Chen or Yongping Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ou, L., Han, S., Ding, W. et al. Design, synthesis and 3D-QSAR study of cytotoxic flavonoid derivatives. Mol Divers 15, 665–675 (2011). https://doi.org/10.1007/s11030-010-9289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-010-9289-7

Keywords

Navigation