Molecular Diversity

, Volume 15, Issue 2, pp 305–316 | Cite as

Carbonic anhydrase inhibition with natural products: novel chemotypes and inhibition mechanisms

Full-Length Paper

Abstract

Five genetically distinct classes of carbonic anhydrases (CAs, EC 4.2.1.1) are present in organisms all over the phylogenetic tree (α-, β-, γ-, δ-, and ζ-families). These metalloenzymes catalyze CO2 hydration to bicarbonate and protons. Inhibition of α-CAs from vertebrates, including humans, with sulfonamides was exploited clinically for decades for various classes of diuretics and systemically acting antiglaucoma agents, whereas newer inhibitors are used as topically acting antiglaucoma drugs, anticonvulsants, antiobesity, antipain and antitumor agents/diagnostic tools. Recently, novel interesting chemotypes, in addition to the sulfonamide and sulfamate were discovered, many of which are based on natural products, such as phenols/polyphenols, phenolic acids, and coumarins. Their detailed mechanism of inhibition has been explained by means of kinetic and X-ray crystallographic studies, and can be used for the rational drug design of other agents. Possible applications for these new chemotypes in drug design of CA inhibitors are envisaged and discussed in detail in this review.

Keywords

Carbonic anhydrase Zinc enzyme Enzyme inhibitor Phenols Polyphenols Natural product Coumarin Polyamine Spermine Spermidine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7: 168–181. doi:10.1038/nrd2467 PubMedCrossRefGoogle Scholar
  2. 2.
    Supuran CT, Scozzafava A, Casini A (2003) Carbonic anhydrase inhibitors. Med Res Rev 23: 146–189. doi:10.1002/med.10025 PubMedCrossRefGoogle Scholar
  3. 3.
    Supuran CT (2008) Carbonic anhydrases—an overview. Curr Pharm Des 14: 603–614. doi:10.2174/138161208783877884 PubMedCrossRefGoogle Scholar
  4. 4.
    Rowlett RS (2010) Structure and catalytic mechanism of the β-carbonic anhydrases. Biochim Biophys Acta 1804: 362–373. doi:10.1016/j.bbapap.2009.08.002 PubMedGoogle Scholar
  5. 5.
    Zimmerman SA, Ferry JG, Supuran CT (2007) Inhibition of the Archaeal β-class (Cab) and γ-class (Cam) carbonic anhydrases. Curr Top Med Chem 7: 901–908. doi:10.2174/156802607780636753 PubMedCrossRefGoogle Scholar
  6. 6.
    Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452: 56–61. doi:10.1038/nature06636 PubMedCrossRefGoogle Scholar
  7. 7.
    Moya A, Tambutté S, Bertucci A, Tambutté E, Lotto S, Vullo D, Supuran CT, Allemand D, Zoccola D (2008) Carbonic anhydrase in the scleractinian coral Stylophora pistillata: characterization, localization, and role in biomineralization. J Biol Chem 283: 25475–25484. doi:10.1074/jbc.M804726200 PubMedCrossRefGoogle Scholar
  8. 8.
    Elleuche S, Pöggeler S (2010) Carbonic anhydrases in fungi. Microbiology 156: 23–29. doi:10.1099/mic.0.032581 PubMedCrossRefGoogle Scholar
  9. 9.
    Nishimori I, Onishi S, Takeuchi H, Supuran CT (2008) The α- and β-classes carbonic anhydrases from Helicobacter pylori as novel drug targets. Curr Pharm Des 14: 622–630. doi:10.2174/138161208783877875 PubMedCrossRefGoogle Scholar
  10. 10.
    Svastová E, Hulíková A, Rafajová M, Zat’ovicová M, Gibadulinová A, Casini A, Cecchi A, Scozzafava A, Supuran CT, Pastorek J, Pastoreková S (2004) Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett 577: 439–445. doi:10.1016/j.febslet.2004.10.043 PubMedCrossRefGoogle Scholar
  11. 11.
    Ebbesen P, Pettersen EO, Gorr TA, Jobst G, Williams K, Kieninger J, Wenger RH, Pastorekova S, Dubois L, Lambin P, Wouters BG, Van Den Beucken T, Supuran CT, Poellinger L, Ratcliffe P, Kanopka A, Görlach A, Gasmann M, Harris AL, Maxwell P, Scozzafava A (2009) Taking advantage of tumor cell adaptations to hypoxia for developing new tumor markers and treatment strategies. J Enzyme Inhib Med Chem 24(S1): 1–39. doi:10.1080/14756360902784425 PubMedCrossRefGoogle Scholar
  12. 12.
    Alterio V, Hilvo M, Di Fiore A, Supuran CT, Pan P, Parkkila S, Scaloni A, Pastorek J, Pastorekova S, Pedone C, Scozzafava A, Monti SM, De Simone G (2009) Crystal structure of the extracellular catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc Natl Acad Sci USA 106: 16233–16238. doi:10.1073/pnas.090830110 PubMedCrossRefGoogle Scholar
  13. 13.
    Alterio V, Di Fiore A, D’Ambrosio K, Supuran CT, De Simone G (2009) X-Ray crystallography of CA inhibitors and its importance in drug design. In: Supuran CT, Winum JY (eds) Drug design of zinc-enzyme inhibitors: functional, structural, and disease applications. Wiley, Hoboken, pp 73–138Google Scholar
  14. 14.
    Supuran CT, Scozzafava A (2007) Carbonic anhydrases as targets for medicinal chemistry. Bioorg Med Chem 15: 4336–4350. doi:10.1016/j.bmc.2007.04.020 PubMedCrossRefGoogle Scholar
  15. 15.
    Covarrubias AS, Bergfors T, Jones TA, Högbom M (2006) Structural mechanics of the pH-dependent activity of beta-carbonic anhydrase from Mycobacterium tuberculosis. J Biol Chem 281: 4993–4999. doi:10.1074/jbc.M510756200 PubMedCrossRefGoogle Scholar
  16. 16.
    Joseph P, Turtaut F, Ouahrani-Bettache S, Montero JL, Nishimori I, Minakuchi T, Vullo D, Scozzafava A, Köhler S, Winum JY, Supuran CT (2010) Cloning, characterization and inhibition studies of a β-carbonic anhydrase from Brucella suis. J Med Chem 53: 2277–2285. doi:10.1021/jm901855h PubMedCrossRefGoogle Scholar
  17. 17.
    Innocenti A, Mühlschlegel FA, Hall RA, Steegborn C, Scozzafava A, Supuran CT (2008) Carbonic anhydrase inhibitors. Inhibition of the beta-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with simple anions. Bioorg Med Chem Lett 18: 5066–5070. doi:10.1016/j.bmcl.2008.07.122 PubMedCrossRefGoogle Scholar
  18. 18.
    Innocenti A, Hall RA, Schlicker C, Mühlschlegel FA, Supuran CT (2009) Carbonic anhydrase inhibitors. Inhibition of the beta-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with aliphatic and aromatic carboxylates. Bioorg Med Chem 17: 2654–2657. doi:10.1016/j.bmc.2009.02.058 PubMedCrossRefGoogle Scholar
  19. 19.
    Innocenti A, Hall RA, Schlicker C, Scozzafava A, Steegborn C, Mühlschlegel FA, Supuran CT (2009) Carbonic anhydrase inhibitors. Inhibition and homology modeling studies of the fungal β-carbonic anhydrase from Candida albicans with sulfonamides. Bioorg Med Chem 17: 4503–4509. doi:10.1016/j.bmc.2009.05.002 PubMedCrossRefGoogle Scholar
  20. 20.
    Krungkrai J, Scozzafava A, Reungprapavut S, Krungkrai SR, Rattanajak R, Kamchonwongpaisan S, Supuran CT (2005) Carbonic anhydrase inhibitors. Inhibition of Plasmodium falciparum carbonic anhydrase with aromatic sulfonamides: towards antimalarials with a novel mechanism of action?  Bioorg Med Chem 13: 483–489. doi:10.1016/j.bmc.2004.10.015 PubMedCrossRefGoogle Scholar
  21. 21.
    Nair SK, Ludwig PA, Christianson DW (1994) Two-site binding of phenol in the active site of human carbonic anhydrase II: structural implications for substrate association. J Am Chem Soc 116: 3659–3660. doi:10.1021/ja00087a086 CrossRefGoogle Scholar
  22. 22.
    Vu H, Pham NB, Quinn RJ (2008) Direct screening of natural product extracts using mass spectrometry. J Biomol Screen 13: 265–275. doi:10.1177/1087057108315739 PubMedCrossRefGoogle Scholar
  23. 23.
    Maresca A, Temperini C, Vu H, Pham NB, Poulsen SA, Scozzafava A, Quinn RJ, Supuran CT (2009) Non-zinc mediated inhibition of carbonic anhydrases: coumarins are a new class of suicide inhibitors. J Am Chem Soc 131: 3057. doi:10.1021/ja809683v PubMedCrossRefGoogle Scholar
  24. 24.
    Maresca A, Temperini C, Pochet L, Masereel B, Scozzafava A, Supuran CT (2010) Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J Med Chem 53: 335–344. doi:10.1021/jm901287j PubMedCrossRefGoogle Scholar
  25. 25.
    Temperini C, Innocenti A, Scozzafava A, Parkkila S, Supuran CT (2010) The coumarin-binding site in carbonic anhydrase accommodates structurally diverse inhibitors: the antiepileptic lacosamide as an example. J Med Chem 53: 850–854. doi:10.1021/jm901524f PubMedCrossRefGoogle Scholar
  26. 26.
    Innocenti A, Durdagi S, Doostdar N, Strom TA, Barron AR, Supuran CT (2010) Nanoscale enzyme inhibitors: fullerenes inhibit carbonic anhydrase by occluding the active site entrance. Bioorg Med Chem 18: 2822–2828. doi:10.1016/j.bmc.2010.03.026 PubMedCrossRefGoogle Scholar
  27. 27.
    Innocenti A, Vullo D, Scozzafava A, Supuran CT (2008) Carbonic anhydrase inhibitors. Interactions of phenols with the 12 catalytically active mammalian isoforms (CA I–XIV). Bioorg Med Chem Lett 18: 1583–1587. doi:10.1016/j.bmcl.2008.01.077 PubMedCrossRefGoogle Scholar
  28. 28.
    Innocenti A, Vullo D, Scozzafava A, Supuran CT (2008) Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I – XIV with a series of substituted phenols including paracetamol and salicylic acid. Bioorg Med Chem 16: 7424–7428. doi:10.1016/j.bmc.2008.06.013 PubMedCrossRefGoogle Scholar
  29. 29.
    Bayram E, Senturk M, Kufrevioglu OI, Supuran CT (2008) In vitro effects of salicylic acid derivatives on human cytosolic carbonic anhydrase isozymes I and II. Bioorg Med Chem 16: 9101–9105. doi:10.1016/j.bmc.2008.09.028 PubMedCrossRefGoogle Scholar
  30. 30.
    Şentürk M, Gülçin I, Daştan A, Supuran CT, Supuran CT (2009) Carbonic anhydrase inhibitors. Inhibition of human erythrocyte isozymes I and II with a series of antioxidant phenols. Bioorg Med Chem Lett 17: 3207–3211. doi:10.1016/j.bmc.2009.01.067 CrossRefGoogle Scholar
  31. 31.
    Innocenti A, Öztürk Sarıkaya SB, Gülçin I, Supuran CT (2010) Carbonic anhydrase inhibitors. Inhibition of mammalian isoforms I – XIV with a series of natural product polyphenols and phenolic acids. Bioorg Med Chem 18: 2159–2164. doi:10.1016/j.bmc.2010.01.076 PubMedCrossRefGoogle Scholar
  32. 32.
    Innocenti A, Gülçin I, Supuran CT (2010) Carbonic anhydrase inhibitors. Antioxidant polyphenol effectively inhibit mammalian isoforms I-XV. Bioorg Med Chem Lett 20. doi:10.1016/j.bmcl.2010.07.038
  33. 33.
    Davis RA, Innocenti A, Poulsen SA, Supuran CT (2010) Carbonic anhydrase inhibitors. Identification of selective inhibitors of the human mitochondrial isozymes VA and VB over the cytosolic isozymes I and II from a natural product-based phenolic library. Bioorg Med Chem 18: 14–18. doi:10.1016/j.bmc.2009.11.021 PubMedCrossRefGoogle Scholar
  34. 34.
    Sethna SM, Shah NM (1945) The chemistry of coumarins. Chem Rev 36: 1–62. doi:10.1021/cr60113a001 CrossRefGoogle Scholar
  35. 35.
    Bayoumi SA, Rowan MG, Beeching JR, Blagbrough IS (2010) Constituents and secondary metabolite natural products in fresh and deteriorated cassava roots. Phytochemistry 71: 598–604. doi:10.1016/j.phytochem.2009.10.012 PubMedCrossRefGoogle Scholar
  36. 36.
    Maresca A, Supuran CT (2010) Coumarins incorporating hydroxy-and chloro- moieties selectively inhibit the transmembrane, tumor-associated carbonic anhydrase isoforms IX and XII over the cytosolic ones I and II. Bioorg Med Chem Lett 20: 4511–4514. doi:10.1016/j.bmcl.2010.06.040 PubMedCrossRefGoogle Scholar
  37. 37.
    Carta F, Temperini C, Innocenti A, Scozzafava A, Kaila K, Supuran CT (2010) Polyamines inhibit carbonic anhydrases by a new mechanism of action, anchoring to the zinc-coordinated water molecule. J Med Chem 53. doi:10.1021/jm1003667
  38. 38.
    Supuran CT (2010) Carbonic anhydrase inhibitors. Bioorg Med Chem 20: 3467–3474. doi:10.1016/j.bmcl.2010.05.009 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Laboratorio di Chimica BioinorganicaUniversità degli Studi di FirenzeSesto Fiorentino (Firenze)Italy

Personalised recommendations