Recent progress of isocyanide-based multicomponent reactions in Iran

Abstract

The aim of this review is to provide an overview of the contributions and recent advances made by Iranian scientists in the field of isocyanide-based reactions between 1999 and 2009. With over 100 publications during this period, Iranians are responsible for approximately 10% of all publications in the world involving isocyanide-based multicomponent reactions (IMCRs). Some important aspects of these IMCRs include the execution of reactions in green reaction mediums like water or ethanol, high atom economies, mild reaction conditions, high yields, and catalyst-free processes. On the other hand, in most of these reactions, new classes of heterocyclic compounds with potential biological and medicinal activities have been reported.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Kaim LE, Grimaud L (2009) Beyond the Ugi reaction: less conventional interactions between isocyanides and iminium species. Tetrahedron 65: 2153–2171. doi:10.1016/j.tet.2008.12.002

    Article  CAS  Google Scholar 

  2. 2.

    Dömling A (2006) Recent developments in isocyanide-based multicomponent reactions in applied chemistry. Chem Rev 106: 17–89. doi:10.1021/cr0505728

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Zhu J, Bienayme H (2005) Multicomponent reactions. Wiley-VCH, Weinheim

    Google Scholar 

  4. 4.

    Dömling A (2002) Recent advances in isocyanide-based multicomponent chemistry. Curr Opin Chem Biol 6: 306–313. doi:10.1016/S1367-5931(02)00328-9

    PubMed  Article  Google Scholar 

  5. 5.

    Ugi I, Heck S (2001) The multicomponent reactions and their libraries for natural and preparative chemistry. Comb Chem High Throughput Screen 4: 1–34

    PubMed  CAS  Google Scholar 

  6. 6.

    Dömling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39: 3168–3210. doi:10.1002/1521-3773(20000915)39:18

    Article  Google Scholar 

  7. 7.

    Bienayme H, Hulme C, Oddon G, Schmidt P (2000) Maximizing synthetic efficiency: multicomponent transformations lead the way. Chem Eur J 6: 3321–3329. doi:10.1002/1521-3765(20000915)6:18

    CAS  Article  Google Scholar 

  8. 8.

    Ugi I (1971) Isonitrile chemistry. Academic Press, New York

    Google Scholar 

  9. 9.

    Ugi I, Meyr R, Fetzer U, Steinbrückner C (1959) Versuche mit isonitrilen. Angew Chem 71: 386–388

    Google Scholar 

  10. 10.

    Passerini M (1921) Sopra gli isonitrili (I). Composto del p-isonitrilazobenzolocon acetone ed acido acetico. Gazz Chim Ital 51: 126–129

    CAS  Google Scholar 

  11. 11.

    Yavari I, Shaabani A, Asghari S, Olmstead MM, Safari NJ (1997) Reaction between alkyl isocyanides and 1,1,1,5,5,5-hexafluoropentane-2,4-dione. Synthesis and structure of 1-alkyl-3,5-bis(trifluoromethyl)-5-hydroxy-1H-pyrrol-2(5H)-ones. J Fluor Chem 86: 77–80. doi:10.1016/S0022-1139(97)00093-6

    CAS  Article  Google Scholar 

  12. 12.

    Huisgen R (1963) 1,3-Dipolare cycloadditionen Rückschau und Ausblick. Angew Chem 75: 604–637. doi:10.1002/ange.19630751304

    CAS  Article  Google Scholar 

  13. 13.

    Huisgen R, Grashey R, Sauer J (1964) Chemistry of alkenes. Interscience, New York, pp 806–877

    Google Scholar 

  14. 14.

    Winterfeldt E, Schumann D, Dillinger HJ (1969) Additionen an die dreifachbindung XI struktur und reaktionen des 2:1-adduktes aus acetylenedicarbonester und isonitrilen. Chem Ber 102: 1656–1664. doi:10.1002/cber.19691020530

    CAS  Article  Google Scholar 

  15. 15.

    Yavari I, Esmaili AA, Asghari S, Bijanzadeh HR (1999) A new and efficient one-pot synthesis of trialkyl 6-tert-butylamino-2H-pyran-2-one-3,4,5-tricarboxylates. J Chem Res (S) 6: 368–369

    Article  Google Scholar 

  16. 16.

    Yavari I, Moradi L (2006) One-pot synthesis of pentaalkyl 7-[(alkylamino)carbonyl]-2-oxa-1-azabicyclo[3.2.0]hept-3-ene-3,4,5,6,7-pentacarboxylate. Helv Chim Acta 89: 1942–1946. doi:10.1002/hlca.200690185

    CAS  Article  Google Scholar 

  17. 17.

    Yavari I, Zare H (2007) An efficient synthesis of trialkyl N-alkyl-6-methyl-2-pyridone-3,4,5-tricarboxylates. Monatsh Chem 138: 787–790. doi:10.1007/s00706-007-0680-8

    CAS  Article  Google Scholar 

  18. 18.

    Asghari S, Qandalee M, Bijnzadeh HR (2006) Synthesis of polyfunctional ketenimines and 1-azadienes use of tert-butyl isocyanide and acetylenic esters in the presence of 3-chloropentane-2, 4-dione. J Chem Res (S) 4: 233–235

    Article  Google Scholar 

  19. 19.

    Souldozi A, Ramazani A, Bouslimani N, Welter R (2007) The reaction of (N-isocyanimino)triphenylphosphorane with dialkyl acetylenedicarboxylates in the presence of 1,3-diphenyl-1,3-propanedione: a novel three-component reaction for the stereoselective synthesis of dialkyl (Z)-2-(5,7-diphenyl-1,3,4-oxadiazepin-2-yl)-2-butenedioates. Tetrahedron Lett 48: 2617–2620. doi:10.1016/j.tetlet.2007.02.010

    CAS  Article  Google Scholar 

  20. 20.

    Yavari I, Esnaasharia M (2005) Three-component one-pot synthesis of functionalized 1,2,3,6-tetrahydropyrano[4,3-b]pyrroles thre-component one-pot synthesis tetrahydroyrano[4,3-b]pyaroles. Synthesis 1049–1051. doi:10.1055/s-2005-861839

  21. 21.

    Nasiri F, Nazem F, Pourdavaie K (2007) Chemo- and stereoselective reaction between alkyl isocyanides and dimethyl 1,3-acetonedicarbocxylate in the presence of acetylenic esters. Mol Divers 11: 101–105. doi:10.1007/s11030-007-9064-6

    PubMed  CAS  Article  Google Scholar 

  22. 22.

    Asghari S, Mohammadi L (2006) Reaction of tert-butyl isocyanide and dialkyl acetylenedicarboxylates in the presence of 2-acetylbutyrolactone. Synthesis of functionalized α-methylene-γ-butyrolactones. Tetrahedron Lett 47: 4297–4299. doi:10.1016/j.tetlet.2006.03.109

    CAS  Article  Google Scholar 

  23. 23.

    Yavari I, Adib M, Sayahi MH (2002) Reaction between isocyanides and dialkyl acetylenedicarboxylates in the presence of 3-methylcyclopentane-1,2,4-trione. One-pot diastereoselective synthesis of tetrahydrocyclopenta[b]pyran derivatives. J Chem Soc Perkin Trans 1: 2343–2346. doi:10.1039/b207548m

    Article  CAS  Google Scholar 

  24. 24.

    Yavari I, Sirouspour M, Souri S (2006) Three-component synthesis of functionalized 5-oxo-4,5-dihydroindeno[1,2-b]pyrans. Mol Divers 10: 265–270. doi:10.1007/s11030-006-9022-8

    PubMed  CAS  Article  Google Scholar 

  25. 25.

    Teimouri MB, Bazhrang R, Eslamimanesh V, Nouri A (2006) Reaction between isocyanides and dialkyl acetylenedicarboxylates in the presence of strong CH-acids: one-pot synthesis of highly functionalized annulated 4H-pyrans. Tetrahedron 62: 3016–3020. doi:10.1016/j.tet.2006.01.039

    CAS  Article  Google Scholar 

  26. 26.

    Shaabani A, Ghadari R, Sarvary A, Rezayan AH (2009) A simple and efficient method for the synthesis of highly functionalized bis(4H-chromene-) and 4H-benzo[g]chromene derivatives via an isocyanide-based multicomponent reaction. J Org Chem 74: 4372–4374. doi:10.1021/jo9005427

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Shaabani A, Soleimani E, Sarvary A, Rezayan AH (2008) A simple and efficient approach to the synthesis of 4H-furo[3,4-b] pyrans via a three-component reaction of isocyanides. Bioorg Med Chem Lett 18: 3968–3970. doi:10.1016/j.bmcl.2008.06.014

    PubMed  CAS  Article  Google Scholar 

  28. 28.

    Shaabani A, Sarvary A, Rezayan AH, Keshipour S (2009) Synthesis of pyrano[2,3-c]pyrazole derivatives via a multicomponent reaction of isocyanides. Tetrahedron 65: 3492–3495. doi:10.1016/j.tet.2009.02.035

    CAS  Article  Google Scholar 

  29. 29.

    Maghsoodlou MT, Yavari I, Nassiri F, Djahaniani H, Razmjoo Z (2003) Reaction between alkyl isocyanides and cyclic 1,3-diketones: a convenient synthesis of functionalized 4H-pyrans. Monatsh Chem 134: 1585–1591. doi:10.1007/s00706-003-0062-9

    CAS  Google Scholar 

  30. 30.

    Yavari I, Anary-Abbasinejad M, Alizadeh A, Hossaini Z (2003) A simple and efficient approach to the synthesis of highly functionalized fused benzochromenes. Tetrahedron 59: 1289–1292. doi:10.1016/S0040-4020(03)00030-9

    CAS  Article  Google Scholar 

  31. 31.

    Yavari I, Djahaniani H, Nasiri F (2003) Reaction between alkyl isocyanides and dimethyl acetylenedicarboxylate in the presence of polyhydroxybenzenes. Synthesis of 4,H-chromene derivatives. Tetrahedron 59: 9409–9412. doi:10.1016/j.tet.2003.09.072

    CAS  Article  Google Scholar 

  32. 32.

    Yavari I, Hazeri N, Maghsoodlou MT, Zabarjad-Shiraz N (2001) Dynamic 1H NMR study of aryl-nitrogen single bond and carbon-carbon double bond rotational energy barriers in two highly functionalized pyranopyrimidines. Monatsh Chem 132: 683–687. doi:10.1007/s007060170082

    CAS  Article  Google Scholar 

  33. 33.

    Yavari I, Anary-Abbasinejad M, Alizadeh A (2002) On the reaction between alkyl isocyanides and ethynyl phenyl ketone in the presence of N,N′-dimethylbarbituric acid. Monatsh Chem 133: 1221–1224. doi:10.1007/s007060200093

    CAS  Article  Google Scholar 

  34. 34.

    Maghsoodlou MT, Khorassani SMH, Hazeri N, Marandi G, Bijanzadeh HR (2006) Synthesis and dynamic 13C NMR study of new system containing polarized carbon–carbon double bonds from reaction between cyclohexyl isocyanide and ethyl propiolate in the presence of N, N-dimethylbarbituric acid. J Chem Res (S) 2: 73–74

    Article  Google Scholar 

  35. 35.

    Shaabani A, Teimouri MB, Arab-Ameri S (2004) A novel pseudo four-component reaction: unexpected formation of densely functionalized pyrroles. Tetrahedron Lett 45: 8409–8413. doi:10.1016/j.tetlet.2004.09.039

    CAS  Article  Google Scholar 

  36. 36.

    Yavari I, Nasiri F, Djahaniani H (2004) Synthesis and dynamic NMR study of ketenimines derived from tert-butyl isocyanide, alkyl 2-arylamino-2-oxo-acetates, and dialkyl acetylenedicarboxylates. Mol Divers 8: 431–435. doi:10.1023/B:MODI.0000047510.22335.8c

    PubMed  CAS  Article  Google Scholar 

  37. 37.

    Yavari I, Djahaniani H, Nasiri F (2004) Synthesis of highly functionalized 1-azadienes and ketenimines. Monatsh Chem 135: 543–548. doi:10.1007/s00706-003-0131-0

    CAS  Google Scholar 

  38. 38.

    Adib M, Sayahi MH, Behnam B, Sheibani E (2006) Reaction between isocyanides and dialkyl acetylenedicarboxylates in the presence of hydantoins: a one-pot synthesis of stable ketenimines. Monatsh Chem 137: 191–196. doi:10.1007/s00706-005-0410-z

    CAS  Article  Google Scholar 

  39. 39.

    Adib M, Nosrati M, Mahdavi M, Zhu LG, Mirzaei P (2007) A novel, one-pot, three-component synthesis of 5H-[1,3]thiazolo[3,2-a]pyrimidine derivatives. Synlett 2703–2706. doi:10.1055/s-2007-991048

  40. 40.

    Adib M, Ghanbary K, Mostofia M, Bijanzadeh HR (2005) Reaction between isocyanides and dialkyl acetylenedicarboxylates in the presence of 4,5-diphenyl-1,3-dihydro-2H-imidazol-2-one. One-pot synthesis of 5H-imidazo[2,1-b][1,3]oxazine derivatives. Tetrahedron 61: 2645–2648. doi:10.1016/j.tet.2005.01.056

    CAS  Article  Google Scholar 

  41. 41.

    Adib M, Sayahi MH, Aghaaliakbarib B, Bijanzadeh HR (2005) Reaction between isocyanides and dialkyl acetylenedicarboxylates in the presence of 2,4-dihydro-3H-pyrazol-3-ones. One-pot synthesis of highly functionalized 7-oxo-1H,7H-pyrazolo[1,2-a]pyrazoles. Tetrahedron 61: 3963–3966. doi:10.1016/j.tet.2005.02.050

    CAS  Article  Google Scholar 

  42. 42.

    Adib M, Sayahi MH, Ziyadi H, Bijanzadeh HR, Zhu LG (2007) A new, one-pot, three-component synthesis of 4H-pyrido[1,2-a]-pyrimidines, 4H-pyrimido[1,2-a]pyrimidines, and 4H-pyrazino[1,2-a]pyrimidines. Tetrahedron 63: 1135–11140. doi:10.1016/j.tet.2007.08.024

    Article  CAS  Google Scholar 

  43. 43.

    Adib M, Sayahi MH, Nosrati M, Zhu LG (2007) A novel, one-pot, three-component synthesis of 4H-pyrido[1,2-a]pyrimidines. Tetrahedron Lett 48: 4195–4198. doi:10.1016/j.tetlet.2007.04.068

    CAS  Article  Google Scholar 

  44. 44.

    Adib M, Mohammadi B, Bijanzadeh HR (2008) A novel, one-pot, three-component synthesis of dialkyl 5-(alkylamino)-1-aryl-1H-pyrazole-3,4-dicarboxylates. Synlett 3180–3182. doi:10.1055/s-0028-1087365

  45. 45.

    Adib M, Sayahi MH, Mahmoodi N, Bijanzadeh HR (2006) One-pot three-component synthesis of highly functionalized 2,3-dihydro-1,3-dioxo-1H,5H-pyrazolo[1,2-a][1,2,4]triazoles. Helv Chim Acta 89: 1176–1180. doi:10.1002/hlca.200690115

    CAS  Article  Google Scholar 

  46. 46.

    Adib M, Sayahi MH, Rahbari S (2005) Reactions between isocyanides and dialkyl acetylenedicarboxylates in the presence of 1,2-diacylhydrazines. One-pot synthesis of highly functionalized pyrazoles. Tetrahedron Lett 46: 6545–6547. doi:10.1016/j.tetlet.2005.07.080

    CAS  Article  Google Scholar 

  47. 47.

    Yavari I, Alizadeh A, Anary-Abbasinejad M, Bijanzadeh HR (2003) Reaction between alkyl isocyanides and dibenzoylacetylene in the presence of strong NH-acids: synthesis of highly functionalized aminofurans. Tetrahedron 59: 6083–6086. doi:10.1016/S0040-4020(03)00990-6

    CAS  Article  Google Scholar 

  48. 48.

    Nasiri F, Yosefdad S (2008) Regioselective hydrolysis of ketenimines derived from NH-acids and acetylenic esters in the presence of tert-butyl isocyanide under neutral conditions. Monatsh Chem 139: 1457–1461. doi:10.1007/s00706-008-0954-9

    CAS  Article  Google Scholar 

  49. 49.

    Dean FM (1982) In: Katritzky AR (ed) Advances in heterocyclic chemistry, vol 30. Academic, New York, pp 167–238

  50. 50.

    Corey EJ, Cheng XM (1989) The logic of chemical synthesis. Wiley, New York

  51. 51.

    Yao T, Zhang X, Larock RC (2004) AuCl3-catalyzed synthesis of highly substituted furans from 2-(1-alkynyl)-2-alken-1-ones. J Am Chem Soc 126: 11164–11165. doi:10.1021/ja0466964

    PubMed  CAS  Article  Google Scholar 

  52. 52.

    Jung CK, Wang JC, Krische MJ (2004) Phosphine-mediated reductive condensation of γ-acyloxy butynoates: a diversity oriented strategy for the construction of substituted furans. J Am Chem Soc 126: 4118–4119. doi:10.1021/ja049377l

    PubMed  CAS  Article  Google Scholar 

  53. 53.

    Yavari I, Nasiri F, Moradi L, Djahaniani H (2004) A simple approach to the synthesis of dialkyl 5-tert-butylamino[2,20]bifuranyl-3,4-dicarboxylates. Tetrahedron Lett 45: 7099–7101. doi:10.1016/j.tetlet.2004.07.120

    CAS  Article  Google Scholar 

  54. 54.

    Yavari I, Mokhtarporyani-Sanandaj A, Moradi L, Mirzaei A (2008) Reaction of benzoyl chlorides with Huisgen’s zwitterion: synthesis of functionalized 2,5-dihydro-1H-pyrroles and tetrasubstituted furans. Tetrahedron 64: 5221–5225. doi:10.1016/j.tet.2008.03.044

    CAS  Article  Google Scholar 

  55. 55.

    Adib M, Sayahi MH, Aali Koloogani S, Mirzaei P (2006) Facile one-pot three-component synthesis of functionalized pyridylfuran-2-amines. Helv Chim Acta 89: 299–303. doi:10.1002/hlca.200690034

    CAS  Article  Google Scholar 

  56. 56.

    Azizian J, Mohammadizadeh MR, Mohammadi AA, Karimi AR (2005) A modified and green methodology for preparation of polysubstituted furans. Heteroatom Chem 2005: 259–262. doi:10.1002/hc.20086

    Article  CAS  Google Scholar 

  57. 57.

    Yavari I, Hossaini Z, Sabbaghan M (2006) Synthesis of functionalized 5-imino-2,5-dihydro-furans through the reaction of isocyanides with activated acetylenes in the presence of ethyl bromopyruvate. Mol Divers 10: 479–482. doi:10.1007/s11030-006-9034-4

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Yavari I, Sabbaghan M, Hossaini Z (2008) Efficient synthesis of functionalized 2,5-dihydrofurans and 1,5-dihydro-2H-pyrrol-2-ones by reaction of isocyanides with activated acetylenes in the presence of hexachloroacetone. Monatsh Chem 139: 625–628. doi:10.1007/s00706-007-0810-3

    CAS  Article  Google Scholar 

  59. 59.

    Shaabani A, Soleimani E, Sarvary A (2008) Synthesis of fully substituted iminolactones via a three-component condensation of isocyanides and acetylenic esters with 2-bromo-1-(4-bromophenyl)ethanone. Monatsh Chem 139: 629–632. doi:10.1007/s00706-007-0807-y

    CAS  Article  Google Scholar 

  60. 60.

    Shaabani A, Rezayan AH, Ghasemi S, Sarvary A (2009) A mild and efficient method for the synthesis of 2,5-dihydro-2-methylfuran-3,4-dicarboxylates via an isocyanide-based multicomponent reaction. Tetrahedron Lett 50: 1456–1458. doi:10.1016/j.tetlet.2009.01.069

    CAS  Article  Google Scholar 

  61. 61.

    Teimouri MB, Shaabani A, Bazhrang R (2006) Reaction between alkyl isocyanides and dialkyl acetylenedicarboxylates in the presence of benzoyl cyanides: one-pot synthesis of highly functionalized iminolactones. Tetrahedron 62: 1845–1848. doi:10.1016/j.tet.2005.11.043

    CAS  Article  Google Scholar 

  62. 62.

    Esmaeili AA, Zendegani H (2005) Three-component reactions involving zwitterionic intermediates for the construction of heterocyclic systems: one pot synthesis of highly functionalized γ-iminolactones. Tetrahedron 61: 4031–4034. doi:10.1016/j.tet.2005.02.053

    CAS  Article  Google Scholar 

  63. 63.

    Hazeri N, Maghsoodlou MT, Habibi-Khorassani SM, Marandi G, Khandan-Barani K, Ziyaadini M, Aminkhani A (2007) Synthesis of novel 2-pyridyl- substituted 2,5-dihydro-2-imino- and 2-amino- furan derivatives via a three component condensation of alkyl isocyanides and acetylenic esters with di-(2-pyridyl) ketone or 2-pyridinecarboxaldehyde. Arkivoc i: 173–179

  64. 64.

    Esmaeili AA, Darbanian M (2003) Reaction between alkyl isocyanides and dialkyl acetylenedicarboxylates in the presence of N-alkyl isatins: convenient synthesis of γ-spiro-iminolactones. Tetrahedron 59: 5545–5548. doi:10.1016/S0040-4020(03)00809-3

    Article  CAS  Google Scholar 

  65. 65.

    Azizian J, Karimi AR, Mohammadi AA (2003) Synthesis of some novel γ-spiroiminolactones from reaction of cyclohexyl isocyanide and dialkyl acetylene dicarboxylates with 1-benzylisatin and tryptanthrine. Synth Commun 33: 387–391. doi:10.1081/SCC-120015767

    CAS  Article  Google Scholar 

  66. 66.

    Maghsoodlou MT, Hazeri N, Habibi-Khorasani SM, Heydari R, Marandi G, Nassiri M (2005) Reaction of alkyl and aryl isocyanide with fluren-9-ones in the presence of acetylenic esters: prepration of γ-spiroiminolactones. Synth Commun 35: 2569–2574. doi:10.1080/00397910500214029

    CAS  Article  Google Scholar 

  67. 67.

    Maghsoodlou MT, Hazeri N, Habibi-Khorasani SM, Marandi G, Nassiri M (2005) γ-Spiroiminolactones synthesis by reaction of acetylenic esters and dicarbonyl compounds in the presence of aryl isocyanide. Synth Commun 35: 2771–2777. doi:10.1080/00397910500290359

    CAS  Article  Google Scholar 

  68. 68.

    Maghsoodlou MT, Hazeri N, Habibi-Khorasani SM, Marandi G, Nassiri M (2006) 1,8-Diazafloren-9-one with alkyl and aryl isocyanide in the presence of acetylenic esters: a facile synthesis of γ-spiroiminolactones. Heterocycl Chem 43: 481–484. doi:10.1002/jhet.5570430234

    CAS  Article  Google Scholar 

  69. 69.

    Hazeri N, Maghsoodlou MT, Habibi-Khorassani SM, Ziyaadini M, Marandi G, Khandan-Barani K, Bijanzadeh HR (2007) γ-Dispiro-iminolactone synthesis by three component reaction between alkyl isocyanides and acetylenic esters with α-dicarbonyl compounds. Arkivoc xiii: 34–40

    Google Scholar 

  70. 70.

    Alizadeh A, Rostamnia S, Zohreh N, Bijanzadeh HR (2008) Synthesis of ethylenetetracarboxylic acid derivatives. Monatsh Chem 139: 49–52. doi:10.1007/s00706-007-0754-7

    CAS  Article  Google Scholar 

  71. 71.

    Yavari I, Djahaniani H (2005) One-step synthesis of substituted 4,7-bis[alkyl(aryl)imino]-3-oxa-6-thia-1-azaspiro[4.4]nona-1,8-dienes. Tetrahedron Lett 46: 491–7493. doi:10.1016/j.tetlet.2005.09.004

    Article  CAS  Google Scholar 

  72. 72.

    Yavari I, Sabbaghan M, Hossaini Z (2008) Efficient synthesis of functionalized 2,5-dihydrofurans and 1,5-dihydro-2H-pyrrol-2-ones by reaction of isocyanides with activated acetylenes in the presence of hexachloroacetone. Monatsh Chem 139: 625–628. doi:10.1007/s00706-007-0810-3

    CAS  Article  Google Scholar 

  73. 73.

    Shaabani A, Rezayan AH, Rahmati A, Sarvary A (2007) A novel isocyanide-based three-component condensation reaction: synthesis of fully substituted imino and spiroiminocyclopentenes. Synlett 1458–1460. doi:10.1055/s-2007-980364

  74. 74.

    Pirrung MC, Zhang J, Morehead AT Jr (1994) Dipolar cycloaddition of cyclic rhodium carbenoids to digonal carbon-synthesis of isoeuparin. Tetrahedron Lett 35: 6229–6230. doi:10.1016/S0040-4039(00)73398-3

    Article  Google Scholar 

  75. 75.

    Pirrung MC, Lee YR (1994) Dipolar cycloaddition of cyclic rhodium carbenoids with vinyl esters: total synthesis of pongamol and lanceolatin-B. Tetrahedron Lett 35: 6231–6234. doi:10.1016/S0040-4039(00)73399-5

    CAS  Article  Google Scholar 

  76. 76.

    Levai A, Kocevar M, Toth G, Simon A, Vranicar L, Adam W (2002) Synthesis and dimethyldioxirane oxidation of tetrahydrobenzofurans. Eur J Org Chem 1830–1833. doi:10.1002/1099-0690(200206)2002:11<1830::AID-EJOC1830>3.0.CO;2-7

  77. 77.

    Qian CY, Nishino H, Kurosawa K, Korp JD (1993) Manganese (II) acetate-mediated double 2-hydroperoxyalkylations of barbituric acid and its derivatives. J Org Chem 58: 4448–4451. doi:10.1021/jo00068a046

    CAS  Article  Google Scholar 

  78. 78.

    Kidwai M, Rastogi S, Venkataramanan R (2003) A novel approach to furopyrimidinones using dry media. Bull Chem Soc Jpn 76: 203–204. doi:10.1246/bcsj.76.203

    CAS  Article  Google Scholar 

  79. 79.

    Shaabani A, Teimouri MB, Bijanzadeh HR (2002) One-pot three component condensation reaction in water: an efficient and improved procedure for the synthesis of furo[2,3-d]pyrimidine-2,4(1H,3H)-diones. Tetrahedron Lett 43: 9151–9154. doi:10.1016/S0040-4039(02)02260-8

    CAS  Article  Google Scholar 

  80. 80.

    Shaabani A, Teimouri MB, Bijanzadeh HR (2004) One-pot three-component condensation reactions in water. An efficient and improved procedure for the synthesis of furan annulated heterocycles. Monatsh Chem 135: 589–593. doi:10.1007/s00706-003-0126-x

    CAS  Google Scholar 

  81. 81.

    Shaabani A, Teimouri MB, Bijanzadeh HR (2004) A novel three-component tetrahydrobenzofuran synthesis. Monatsh Chem 135: 441–446. doi:10.1007/s00706-003-0070-9

    CAS  Google Scholar 

  82. 82.

    Teimouri MB, Bazhrang R (2006) Shaken not stirred: a facile synthesis of 1,4-bis(furo[2,3-d]pyrimidine-2,4(1H,3H)-dione-5-yl)benzenes by one-pot reaction of isocyanides, N, N-dimethylbarbituric acid, and terephthaldialdehyde. Bioorg Med Chem Lett 16: 3697–3701. doi:10.1016/j.bmcl.2006.04.065

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Teimouri MB, Mansouri F (2008) Simple synthesis of 7H-phenaleno[1,2-b]furan-7-one derivatives by one-pot, three-component reactions. J Comb Chem 10: 507–510. doi:10.1021/cc8000103

    PubMed  CAS  Article  Google Scholar 

  84. 84.

    Teimouri MB, Khavasi HR (2007) One-pot three-component regioselective synthesis of linear naphtho[2,3-b]-furan-4,9-diones. Tetrahedron 63: 10269–10275. doi:10.1016/j.tet.2007.07.082

    CAS  Article  Google Scholar 

  85. 85.

    Teimouri MB, Bazhrang R (2008) An efficient three-component reaction involving [3 + 1 + 1] furannulation leading to furanonaphthoquinones in water. Monatsh Chem 139: 957–961. doi:10.1007/s00706-007-0846-4

    CAS  Article  Google Scholar 

  86. 86.

    Bentley KW (1965) The isoquinoline alkaloids. Pergamon Press, London

    Google Scholar 

  87. 87.

    Hansch CP, Sammes G, Taylor JB (1990) Comprehensive medicinal chemistry. Pergamon Press, Oxford

    Google Scholar 

  88. 88.

    Scott JD, Williams RM (2002) Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem Rev 102: 1669–1730. doi:10.1021/cr010212u

    PubMed  CAS  Article  Google Scholar 

  89. 89.

    Kuhla DE, Inc P (1979) Imidazo[1,5-a]-quinolinium and imidazo[1,5-a]-pyridinium compounds. US patent 4,163,745

  90. 90.

    Shaabani A, Soleimani E, Khavasi HR (2008) Synthesis of 1-aminoimidazo[5,1-a]isoquinolinium salts based on multicomponent reactions of isocyanides. J Comb Chem 10: 442–446. doi:10.1021/cc700196h

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    Pop E, Wu WM, Shek E, Bodor N (1989) Synthesis and properties of some dihydropyridine and dihydroisoquinoline derivatives of benzylpenicillin. J Med Chem 32: 1774–1781. doi:10.1021/jm00128a019

    PubMed  CAS  Article  Google Scholar 

  92. 92.

    Prokai L, Prokai-Tatrai K, Bodor N (2000) Targeting drugs to the brain by redox chemical delivery systems. Med Res Rev 20: 367–416. doi:10.1002/1098-1128(200009)

    PubMed  CAS  Article  Google Scholar 

  93. 93.

    Lukevics E, Segal I, Zablotskaya A, Germane S (1997) Synthesis and neurotropic activity of novel quinoline derivatives. Molecules 2: 180–185. doi:10.3390/21200180

    CAS  Article  Google Scholar 

  94. 94.

    Maryanoff BE, McComsey DF, Gardocki JF, Shank RP, Costanzo MJ, Nortey SO, Schneider CR, Setler PE (1987) Pyrroloisoquinoline antidepressants. 2. In-depth exploration of structure–activity relationships. J Med Chem 30: 1433–1454. doi:10.1021/jm00391a028

    PubMed  CAS  Article  Google Scholar 

  95. 95.

    Sorgi KL, Maryanoff CA, McComsey DF, Graden DW, Maryanoff BE (1990) Application to the stereoselective synthesis of pyrroloisoquinoline antidepressants. J Am Chem Soc 112: 3567–3579. doi:10.1021/ja00165a048

    CAS  Article  Google Scholar 

  96. 96.

    Knjlker HJ, Agarwal S (2005) Total synthesis of the antitumor active pyrrolo[2,1-a]isoquinoline alkaloid (±)-crispine A. Tetrahedron Lett 46: 1173–1175. doi:10.1016/j.tetlet.2004.12.066

    Article  CAS  Google Scholar 

  97. 97.

    Shaabani A, Soleimani E, Khavasi HR (2007) An unexpected, novel, three-component reaction between isoquinoline, an isocyanide and strong CH-acids in water. Tetrahedron Lett 48: 4743–4747. doi:10.1016/j.tetlet.2007.05.019

    CAS  Article  Google Scholar 

  98. 98.

    Shaabani A, Soleimani E, Moghimi-Rad J (2008) A novel three-component reaction for the synthesis of 1,2-dihydroisoquinolines via the reaction of isoquinoline and isocyanides with strong CH-acids in water. Tetrahedron Lett 49: 1277–1281. doi:1016/j.tetlet.2007.11.079

    CAS  Article  Google Scholar 

  99. 99.

    Donnelly DMX, Boland GM (1995) Isoflavonoids and neoflavonoids: naturally occurring O-heterocycles. Nat Prod Rep 12: 321–338. doi:10.1039/NP9951200321

    CAS  Article  Google Scholar 

  100. 100.

    Posakony J, Hirao M, Stevens S, Simon JA, Bedalov A (2004) Inhibitors of Sir2: evaluation of splitomicin analogues. J Med Chem 47: 2635–2644. doi:10.1021/jm030473r

    PubMed  CAS  Article  Google Scholar 

  101. 101.

    Kumar A, Singh BK, Tyagi R, Jain SK, Sharma SK, Prasad AK et al (2005) Mechanism of biochemical action of substituted 4-methylcoumarins. Part 11: comparison of the specificities of acetoxy derivatives of 4-methylcoumarin and 4-phenylcoumarin to acetoxycoumarins: protein transacetylase. Bioorg Med Chem 13: 4300–4305. doi:10.1016/j.bmc.2005.04.023

    PubMed  CAS  Article  Google Scholar 

  102. 102.

    Roelens F, Huvaere K, Dhooge W, Cleemput MV, Comhaire F, Keukeleire DD (2005) Regioselective synthesis and estrogenicity of (±)-8-alkyl-5,7-dihydroxy-4-(4-hydroxyphenyl)-3,4-dihydrocoumarins. Eur J Med Chem 40: 1042–1151. doi:10.1016/j.ejmech.2005.04.010

    PubMed  CAS  Article  Google Scholar 

  103. 103.

    Iinuma M, Tanaka T, Mizuno M, Katsuzaki T, Ogawa H (1989) Structure–activity correlation of flavonoids for inhibition of bovin lens aldose reductase. Chem Pharm Bull 37: 1813– 1815

    PubMed  CAS  Google Scholar 

  104. 104.

    Takechi M, Tanaka Y, Takehara M, Nonaka GI, Nishioka I (1985) Structure and antiherpetic activity among the Tannins. Phytochemistry 24: 2245–2250. doi:10.1016/S0031-9422(00)83018-6

    CAS  Article  Google Scholar 

  105. 105.

    Hsu FL, Nonaka GI, Nishioka I (1985) Tannins and related compounds. XXXI. Isolation and characterization of proanthocyanidins in kandelia candel (L.) DRUCE. Chem Pharm Bull 33: 3142–3152

    CAS  Google Scholar 

  106. 106.

    Speranza G, Morelli CF, Manitto P (2000) The michael reaction of N-cinnamoylazoles with phenols. A simple synthesis of 4-arylchroman-2-ones and 1-arylbenzo[f]chroman-3-ones. Synthesis 123–126. doi:10.1055/s-2000-6233

  107. 107.

    Jia C, Piao D, Kitamura T, Fujiwara Y (2000) New method for preparation of coumarins and quinolinones via Pd-catalyzed intramolecular hydroarylation of C–C triple bonds. J Org Chem 65: 7516–7522. doi:10.1021/jo000861q

    PubMed  CAS  Article  Google Scholar 

  108. 108.

    Lee JM, Tseng TH, Lee YJ (2001) An efficient synthesis of neoflavonoid antioxidants based on montmorillonite K-10 catalysis. Synthesis 2247–2254. doi:10.1055/s-2001-18436

  109. 109.

    Li K, Foresee LN, Tunge JA (2005) Trifluoroacetic acid- mediated hydroarylation: synthesis of dihydrocoumarins and dihydroquinolones. J Org Chem 70: 2881–2883. doi:10.1021/jo0477650

    PubMed  CAS  Article  Google Scholar 

  110. 110.

    Aoki S, Amamoto C, Oyamada J, Kitamura T (2005) A convenient synthesis of dihydrocoumarins from phenols and cinnamic acid derivatives. Tetrahedron 61: 9291–9297. doi:10.1016/j.tet.2005.07.062

    CAS  Article  Google Scholar 

  111. 111.

    Graham SR, Murphy JA, Kennedy AR (1999) Hypophosphite mediated carbon–carbon bond formation: total synthesis of epialboatrin and structural revision of alboatrin. J Chem Soc Perkin Trans 1: 3071–3073. doi:10.1039/a907032j

    Article  Google Scholar 

  112. 112.

    Jia C, Piao D, Oyamada J, Lu W, Kitamura T, Fujiwara Y (2000) Efficient activation of aromatic C–H bonds for addition to C–C multiple bonds. Science 287: 1992–1995. doi:10.1126/science.287.5460.1992

    PubMed  CAS  Article  Google Scholar 

  113. 113.

    Ritleng V, Sirlin C, Pfeffer M (2002) Ru-, Rh-, and Pd-Catalyzed C–C bond formation involving C–H activation and addition on unsaturated substrates: reactions and mechanistic aspects. Chem Rev 102: 1731–1770. doi:10.1021/cr0104330

    PubMed  CAS  Article  Google Scholar 

  114. 114.

    Song CE, Jung D, Choung SY, Roh EJ, Lee S (2004) Dramatic enhancement of catalytic activity in an ionic liquid: highly practical friedel-crafts alkenylation of arenes with alkynes catalyzed by metal triflates. Angew Chem Int Ed 43: 6183–6185. doi:10.1002/anie.200460292

    CAS  Article  Google Scholar 

  115. 115.

    Shi Z, He C (2004) Efficient functionalization of aromatic C–H bonds catalyzed by gold(III) under mild and solvent-free conditions. J Org Chem 69: 3669–3671. doi:10.1021/jo0497353

    PubMed  CAS  Article  Google Scholar 

  116. 116.

    Shaabani A, Soleimani E, Rezayan AH, Sarvary A, Khavasi HR (2008) A novel isocyanide-based four-component reaction: a facile synthesis of fully substituted 3,4-dihydrocoumarin derivatives. Org Lett 10: 2581–2584. doi:10.1021/ol800856e

    PubMed  CAS  Article  Google Scholar 

  117. 117.

    Shaabani A, Sarvary A, Soleimani E, Rezayan AH, Heidary M (2008) A novel method for the synthesis of substituted 3,4-dihydrocoumarin derivatives via isocyanide-based three-component reaction. Mol Divers 12: 197–202. doi:10.1007/s11030-008-9090-z

    PubMed  CAS  Article  Google Scholar 

  118. 118.

    Yavari I, Djahaniani H, Nasiri F (2004) Synthesis of coumarines and 4H-chromenes through the reaction of tert-butyl isocyanide and dialkyl acetylenedicarboxylates in presence of 2-hydroxybenzaldehydes. Synthesis 679–682. doi:10.1055/s-2004-815990

  119. 119.

    Yavari I, Djahaniani H, Nasiri F (2006) The crystal structure of tert-butyl coumarin-3-carboxylate. J Iran Chem Soc 3: 46–50

    CAS  Google Scholar 

  120. 120.

    Trapani G, Franco M, Ricciardi L, Latrofa A, Genchi G, Sanna E, Tuveri F, Cagetti E, Biggio G, Liso G (1997) Synthesis and binding affinity of 2-phenylimidazo[1,2-a]pyridine derivatives for both central and peripheral benzodiazepine receptors. A new series of high-affinity and selective ligands for the peripheral type. J Med Chem 40: 3109–3118. doi:10.1021/jm970112+

    PubMed  CAS  Article  Google Scholar 

  121. 121.

    Hamdouchi C, de Blas J, del Prado M, Gruber J, Heinz BA, Vance L (1999) 2-Amino-3-substituted-6-[(E)-1-phenyl-2-(N-methylcarbamoyl)vinyl]imidazo[1,2-a]pyridines as a novel class of inhibitors of human rhinovirus: stereospecific synthesis and antiviral activity. J Med Chem 42: 50–59. doi:10.1021/jm9810405

    PubMed  CAS  Article  Google Scholar 

  122. 122.

    Gueiffier A, Mavel S, Lhassani M, Elhakmaoui A, Snoeck R, Andrei G, Chavignon O, Teulade JC, Witvrouw M, Balzarini J, De Clercq E, Chapat JP (1998) Synthesis of imidazo[1,2-a]pyridines as antiviral agents. J Med Chem 41: 5108–5112. doi:10.1021/jm981051y

    PubMed  CAS  Article  Google Scholar 

  123. 123.

    Mosby WL (1961) Fused 6/6 ring systems with one extra heteroatom. In: Mosby WL (ed) Heterocyclic systems with bridgehead nitrogen atoms. Wiley, New York, Part I, p 460 and Part II, p 802

  124. 124.

    Blewitt HL (1977) Indolizine & aza derivatives with additional nitrogens in the 5-membered ring. In: Weissberger A, Taylor EC (eds) Special topics in heterocyclic chemistry. Wiley, New York, p 117

    Google Scholar 

  125. 125.

    Spitzer WA, Victor F, Pollock DG, Hayers JS (1988) Imidazo[1,2-a]pyrimidines and imidazo[1,2-a]pyrazines: the role of nitrogen position in inotropic activity. J Med Chem 31: 1590–1595. doi:10.1021/jm00403a018

    PubMed  CAS  Article  Google Scholar 

  126. 126.

    Groebke K, Weber L, Mehlin F (1998) Synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett 661–663. doi:10.1055/s-1998-1721

  127. 127.

    Bienayme’ H, Bouzid K (1998) A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angew Chem Int Ed 37: 2234–2237. doi:10.1002/(SICI)1521-3773(19980904)

    Article  Google Scholar 

  128. 128.

    Blackburn C (1998) A three-component solid-phase synthesis of 3-aminoimidazo[l,2-a]azines. Tetrahedron Lett 39: 5469–5472. doi:10.1016/S0040-4039(98)01113-7

    CAS  Article  Google Scholar 

  129. 129.

    Mandair GS, Light M, Russell A, Hursthouse M, Bradley M (2002) Re-evaluation of the outcome of a multiple component reaction-2- and 3-amino-imidazo[1,2-a]pyrimidines. Tetrahedron Lett 43: 4267–4269. doi:10.1016/S0040-4039(02)00709-8

    CAS  Article  Google Scholar 

  130. 130.

    Hulme C, Lee YS (2008) Emerging approaches for the syntheses of bicyclic imidazo[1,2-x]-heterocycles. Mol Divers 12: 1–15. doi:10.1007/s11030-008-9072-1

    PubMed  CAS  Article  Google Scholar 

  131. 131.

    Shaabani A, Soleimani E, Maleki A (2006) Ionic liquid promoted one-pot synthesis of 3-aminoimidazo[1,2-a]pyridines. Tetrahedron Lett 47: 3031–3034. doi:10.1016/j.tetlet.2006.03.011

    CAS  Article  Google Scholar 

  132. 132.

    Shaabani A, Maleki A, Moghimi-Rad J, Soleimani E (2007) Cellulose sulfuric acid catalyzed one-pot three-component synthesis of imidazoazines. Chem Pharm Bull 55: 957–958

    PubMed  CAS  Article  Google Scholar 

  133. 133.

    Shaabani A, Soleimani E, Maleki A, Moghimi-Rad J (2008) Rapid synthesis of 3-aminoimidazo[1,2-a]pyridines and pyrazines. Synth Commun 38: 1090–1095. doi:10.1080/00397910701862931

    CAS  Article  Google Scholar 

  134. 134.

    Shaabani A, Soleimani E, Maleki A (2007) One-pot three-component synthesis of 3-aminoimidazo[1,2-a]pyridines and -pyrazines in the presence of silica sulfuric acid. Monatsh Chem 138: 73–76. doi:10.1007/s00706-006-0561-6

    CAS  Article  Google Scholar 

  135. 135.

    Shaabani A, Rezazadeh F, Soleimani E (2008) Ammonium chloride catalyzed one-pot synthesis of imidazo[1,2-a]pyridines. Monatsh Chem 139: 931–933. doi:10.1007/s00706-008-0872-x

    CAS  Article  Google Scholar 

  136. 136.

    Shaabani A, Soleimani E, Sarvary A, Rezayan AH, Maleki A (2009) Tin(II) chloride dihydrate catalyzed Groebke condensation: an efficient protocol for the synthesis of 3-aminoimidazo[1,2-a]pyridines. Chin J Chem 27: 369–371. doi:10.1002/cjoc.200990060

    CAS  Article  Google Scholar 

  137. 137.

    Adib M, Mahdavi M, Noghania MA, Mirzaei P (2007) Catalyst-free three-component reaction between 2-aminopyridines (or 2-aminothiazoles), aldehydes, and isocyanides in water. Tetrahedron Lett 48: 7263–7265. doi:10.1016/j.tetlet.2007.08.049

    CAS  Article  Google Scholar 

  138. 138.

    Shaabani A, Soleimani E, Maleki A, Moghimi-Rad J (2009) A novel class of extended pi-conjugated systems: one-pot synthesis of bis-3-aminoimidazo[1,2-a]pyridines, pyrimidines and pyrazines. Mol Divers 13: 269–274. doi:10.1007/s11030-008-9101-0

    PubMed  CAS  Article  Google Scholar 

  139. 139.

    Randall LO, Kappel B (1973) In: Garattini S, Mussini E, Randall LO (eds) Benzodiazepines. Raven Press, New York, p 27

  140. 140.

    Schutz H (1982) Benzodiazepines. Springer, Heidelberg

    Google Scholar 

  141. 141.

    Landquist JK (1984) In: Katritzky AR, Rees CW (eds) Comprehensive heterocyclic chemistry, vol 1. Pergamon, Oxford, p 166

  142. 142.

    Archer GA, Sternbach LH (1968) The chemistry of benzodiazepines. Chem Rev 68: 747–784. doi:10.1021/cr60256a004

    CAS  Article  Google Scholar 

  143. 143.

    Michelini S, Cassano GB, Frare F, Perugi G (1996) Long-term use of benzodiazepines: tolerance, dependence and clinical problems in anxiety and mood disorders. Pharmacopsychiatry 29: 127–134

    PubMed  CAS  Google Scholar 

  144. 144.

    Varala R, Enugala R, Nuvula S, Adapa SR (2006) Ceric ammonium nitrate (CAN) promoted efficient synthesis of 1,5-benzodiazepine derivatives. Synlett 7: 1009–1014. doi:10.1055/s-2006-939066

    Google Scholar 

  145. 145.

    Kuo CW, More SV, Yao CF (2006) NBS as an efficient catalyst for the synthesis of 1,5-benzodiazepine derivatives under mild conditions. Tetrahedron Lett 47: 8523–8528. doi:10.1016/j.tetlet.2006.09.128

    CAS  Article  Google Scholar 

  146. 146.

    Shaabani A, Maleki A (2007) A fast and efficient method for the synthesis of 1,5-benzodiazepine derivatives under solvent-free conditions. Iran J Chem Chem Eng 26: 93–97

    CAS  Google Scholar 

  147. 147.

    Brogden RN, Heel RC, Speight TM, Avery GS (1980) Long-term use of benzodiazepines: tolerance, dependence and clinical problems in anxiety therapeutic use in anxiety. Drugs 20: 161–178

    PubMed  CAS  Article  Google Scholar 

  148. 148.

    Atwal KS, Bergey JL, Hedberg A, Moreland S (1987) Synthesis and biological activity of novel calcium channel blockers: 2,5-dihydro-4-methyl-2-phenyl-1,5-benzothiazepine-3-carboxylic acid esters and 2,5-dihydro-4-methyl-2-phenyl-1,5-benzodiazepine-3-carboxylic acid esters. J Med Chem 30: 635–640. doi:10.1021/jm00387a009

    PubMed  CAS  Article  Google Scholar 

  149. 149.

    Merluzzi VJ, Hargrave KD, Labadia M, Grozinger K, Skoog M, Wu JC, Shih CK, Eckner K, Hattox S, Adams J, Rosenthal AS, Faanes R, Eckner RJ, Koup RA, Sullivan JL (1990) Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. Science 250: 1411–1413. doi:10.1126/science.1701568

    PubMed  CAS  Article  Google Scholar 

  150. 150.

    Di Braccio M, Grossi G, Roma G, Vargiu L, Mura M, Marongiu ME (2001) 1,5-Benzodiazepines. Part XII. Synthesis and biological evaluation of tricyclic and tetracyclic 1,5-benzodiazepine derivatives as nevirapine analogues. Eur J Med Chem 36: 935–949. doi:10.1016/S0223-5234(01)80009-X

    PubMed  CAS  Article  Google Scholar 

  151. 151.

    Werner W, Baumgart J, Burckhardt G, Fleck WF, Geller K, Gutsche W, Hanschmann H, Messerschmidt A, Roemer W (1990) Physicochemical characterization of substituted chromeno[4,3-b][1,5]benzodiazepine stereoisomers designed as cell membrane active antitumor agents. Biophys Chem 35: 271–276. doi:10.1016/0301-4622(90)80015-Y

    PubMed  CAS  Article  Google Scholar 

  152. 152.

    Ding CZ, Batorsky R, Bhide R, Chao HJ, Cho Y, Chong S, GulloBrown J, Guo P, Kim SH, Lee F, Leftheris K, Miller A, Mitt T, Patel M, Penhallow BA, Ricca C, Rose WC, Schmidt R, Slusarchyk WA, Vite G, Yan N, Manne V, Hunt JT (1999) Discovery and structure–activity relationships of imidazole- containing tetrahydrobenzodiazepine inhibitors of farnesyltransferase. J Med Chem 42: 5241–5253. doi:10.1021/jm990391w

    PubMed  CAS  Article  Google Scholar 

  153. 153.

    Mandrioli R, Mercolini L, Raggi MA (2008) Benzodiazepine metabolism: an analytical perspective. Curr Drug Metab 9: 827–844

    PubMed  CAS  Article  Google Scholar 

  154. 154.

    Zhao HY, Liu G (2007) Solution-phase parallel synthesis of diverse 1,5-benzodiazepin-2-ones. J Comb Chem 9: 1164–1176. doi:10.1021/cc7001149

    PubMed  CAS  Article  Google Scholar 

  155. 155.

    Finch H, Shah P, Carr RAE (1996) 1,5-Benzodiazepines derivatives having CCK and/or gastrin antagonistic activity. US patent 5,585,376

  156. 156.

    Tranquillini ME, Cassara PG, Corsi M, Curotto G, Donati D, Finizia G, Pentassuglia G, Polinelli S, Tarzia G, Ursini A, Van Amsterdam FTM (1997) Novel 1,5-benzodiazepines as CCK-B ligands, Effect of aryl-carbamic substituents at the C-3, position together with halogen substitution on the benzo-fused ring. Arch Pharm 330: 353–357

    CAS  Article  Google Scholar 

  157. 157.

    Shaabani A, Maleki A, Mofakham H, Moghimi-Rad J (2008) A novel one-pot pseudo-five-component synthesis of 4,5,6,7-tetrahydro-1H-1,4-diazepine-5-carboxamide derivatives. J Org Chem 73: 3925–3927. doi:10.1021/jo8002612

    PubMed  CAS  Article  Google Scholar 

  158. 158.

    Shaabani A, Maleki A, Mofakham H (2008) Novel multicomponent one-pot synthesis of tetrahydro-1H-1,5-benzodiazepine-2-carboxamide derivatives. J Comb Chem 10: 595–598. doi:10.1021/cc8000635

    PubMed  CAS  Article  Google Scholar 

  159. 159.

    Gupta D, Ghosh NN, Chandra R (2005) Synthesis and pharmacological evaluation of substituted 5-[4-[2-(6,7-dimethyl-1,2,3,4-tetrahydro-2-oxo-4-quinoxalinyl)ethoxy]phenyl]methylene]thiazolidine-2,4-dione derivatives as potent euglycemic and hypolipidemic agents. Bioorg Med Chem Lett 15: 1019–1022. doi:10.1016/j.bmcl.2004.12.041

    PubMed  CAS  Article  Google Scholar 

  160. 160.

    Rösner M, Billhardt-Troughton UM, Kirsh R, Kleim JP, Meichsner C, Riess G, Winkler I (1998) Quinoxalines, process for their preparation, and their use. US patent 5,723,461

  161. 161.

    Jones Z, Groneberg R, Drew M, Eary CT (2005) Inhibitors of cholesteryl ester transfer protein. US patent 20050282812

  162. 162.

    Buron F, Ple N, Turck A, Queguiner G (2005) Synthesis of pyrazine alcaloids from Botryllus leachi diazines. J Org Chem 70: 2616–2621. doi:10.1021/jo0478196

    PubMed  CAS  Article  Google Scholar 

  163. 163.

    Betancor C, Freire R, Perez-Martin I, Prange T, Suarez E (2005) Hydrogen atom transfer methodology for the synthesis of C-22, C-23, and C-25 stereoisomers of cephalostatin north 1 side chain from spirostan sapogenins. Tetrahedron 61: 2803–2814. doi:10.1016/j.tet.2005.01.077

    CAS  Article  Google Scholar 

  164. 164.

    Fukuwatari T, Sugimoto E, Shibata K (2002) Growth-promoting activity of pyrazinoic acid, a putative active compound of antituberculosis drug pyrazinamide, in niacin-deficient rats through the inhibition of ACMSD activity. Biosc Biotech Biochem 66: 1435–1441

    CAS  Article  Google Scholar 

  165. 165.

    Cynamon MH, Speirs RJ, Welch JT (1998) In vitro antimycobacterial activity of 5-chloropyrazinamide. Antimicrob Agents Chemother 42: 462–463

    PubMed  CAS  Google Scholar 

  166. 166.

    Shaabani A, Maleki A, Moghimi-Rad J (2007) A novel isocyanide-based three-component reaction: synthesis of highly substituted 1,6-dihydropyrazine-2,3-dicarbonitrile derivatives. J Org Chem 72: 6309–6311. doi:10.1021/jo0707131

    PubMed  CAS  Article  Google Scholar 

  167. 167.

    Shaabani A, Maleki A, Mofakham H, khavasi HR (2008) Novel isocyanide-based three-component synthesis of 3,4-dihydroquinoxalin-2-amine derivatives. J Comb Chem 10: 323–326. doi:10.1021/cc7001777

    PubMed  CAS  Article  Google Scholar 

  168. 168.

    Shaabani A, Maleki A, Mofakham H (2009) A novel synthesis of highly substituted imidazo[1,5-a]pyrazine derivatives by 3-CR/2-CR sequence. Mol Divers 13: 63–67. doi:10.1007/s11030-008-9099-3

    PubMed  CAS  Article  Google Scholar 

  169. 169.

    Erian AW (1993) The chemistry of β-enaminonitrles as versatile reagents in heterocyclic synthesis. Chem Rev 93: 1991– 2005. doi:10.1021/cr00022a002

    CAS  Article  Google Scholar 

  170. 170.

    Abd El-Wahab AHF (2002) Activated nitriles in heterocyclic synthesis: synthesis of new [1]benzopyrano[3’,4’:5,6]pyrano[2,3-d]pyrimidine and [1]benzopyrano[3’,4’:5,6]pyrano[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives with promising antibacterial activity. Acta Pharm 52: 269–280

    CAS  Google Scholar 

  171. 171.

    Rosowsky A, Chen H (2001) A novel method of synthesis of 2,4-diamino-6-arylmethylquinazolines using palladium(0)-catalyzed organozinc chemistry. J Org Chem 66: 7522–7526. doi:10.1021/jo010536i

    PubMed  CAS  Article  Google Scholar 

  172. 172.

    Mizuno T, Iwai T, Ishino Y (2004) The simple solvent-free synthesis of 1H-quinazoline-2,4-diones using supercritical carbon dioxide and catalytic amount of base. Tetrahedron Lett 45: 7073–7075. doi:10.1016/j.tetlet.2004.07.152

    CAS  Article  Google Scholar 

  173. 173.

    Mander LN, McLachlan MM (2003) The total synthesis of the galbulimima alkaloid GB 13. J Am Chem Soc 125: 2400–2401. doi:10.1021/ja029725o

    PubMed  CAS  Article  Google Scholar 

  174. 174.

    Sandler SR, Karo W (1983) Organic functional group preparations, chap 17. Academic Press, San Diego

    Google Scholar 

  175. 175.

    Nakajima N, Saito M, Ubukata M (2002) Activated dimethyl sulfoxide dehydration of amide and its application to one-pot preparation of benzyl-type perfluoroimidates. Tetrahedron 58: 3561–3577. doi:10.1016/S0040-4020(02)00304-6

    CAS  Article  Google Scholar 

  176. 176.

    Corey EJ, Kim CU (1972) New and highly effective method for the oxidation of primary and secondary alcohols to carbonyl compounds. J Am Chem Soc 94: 7586–7587. doi:10.1021/ja00776a056

    CAS  Article  Google Scholar 

  177. 177.

    Ruck RT, Bergman RG (2004) Zirconium-mediated conversion of amides to nitriles: a surprising additive effect. Angew Chem Int Ed 43: 5375–5377. doi:10.1002/anie.200461064

    Article  CAS  Google Scholar 

  178. 178.

    Shaabani A, Maleki A, Mofakham H, khavasi HR (2008) Novel isocyanide-based three-component one-pot synthesis of cyanophenylamino-acetamide derivatives. J Comb Chem 10: 883–885. doi:10.1021/cc800099r

    PubMed  CAS  Article  Google Scholar 

  179. 179.

    Beckwith ALJ (1970) In: Zabicky J (ed) The chemistry of amides: synthesis of amides. In: Interscience, New York

  180. 180.

    Benz G (1991) In: Trost BM, Fleming I (eds) Comprehensive organic synthesis, vol 6. Pergamon, Oxford, pp 381– 418

  181. 181.

    Katritzky AR, Cai C, Suzuki K, Singh SK (2004) Facile syntheses of oxazolines and thiazolines with N-acylbenzotriazoles under microwave irradiation. J Org Chem 69: 811–814. doi:10.1021/jo0355092

    PubMed  CAS  Article  Google Scholar 

  182. 182.

    Shreder K, Zhang L, Goodman M (1998) Synthesis of a constrained enkephalin analog to illustrate a novel route to the piperazinone ring structure. Tetrahedron Lett 39: 221–224. doi:10.1016/S0040-4039(97)

    CAS  Article  Google Scholar 

  183. 183.

    Kangani CO, Kelley DE (2005) One pot direct synthesis of amides or oxazolines from carboxylic acids using Deoxo-Fluor reagent. Tetrahedron Lett 46: 8917–8920. doi:10.1016/j.tetlet.2005.10.068

    PubMed  CAS  Article  Google Scholar 

  184. 184.

    Hansch C, Sammes PG, Taylor JB (1990) Comprehensive medicinal chemistry, vol 2. Pergamon Press, Oxford

    Google Scholar 

  185. 185.

    Kleemann A, Engel J, Kutscher B, Reichert D (1999) Pharmaceutical substances, syntheses, patents, applications. Thieme, stuttgart

  186. 186.

    Cremlyn R (1996) Organosulfur chemistry: an introduction. John Wiley and Sons, New York

    Google Scholar 

  187. 187.

    Shaabani A, Soleimani E, Rezayan AH (2007) A novel approach for the synthesis of alkyl and aryl sulfonamides. Tetrahedron Lett 48: 2185–2188. doi:10.1016/j.tetlet.2007.01.091

    CAS  Article  Google Scholar 

  188. 188.

    Shaabani A, Soleimani E, Rezayan AH (2007) A novel approach for the synthesis of aryl amides. Tetrahedron Lett 48: 6137–6141. doi:10.1016/j.tetlet.2007.06.136

    CAS  Article  Google Scholar 

  189. 189.

    Dean FA (1963) Naturally occurring oxygen ring compounds. Butterworth, London

    Google Scholar 

  190. 190.

    Lipshutz BH (1986) Five-membered heteroaromatic rings as intermediates in organic synthesis. Chem Rev 86: 795–819. doi:10.1021/cr00075a005

    CAS  Article  Google Scholar 

  191. 191.

    Nakamura M, Liang C, Nakamura E (2004) Zn(II)/amine-catalyzed coupling reaction of alkylidenemalonates with propargyl alcohol: a one-pot synthesis of methylenetetrahydrofurans. Org Lett 6: 2015–2017. doi:10.1021/ol0493554

    PubMed  CAS  Article  Google Scholar 

  192. 192.

    Posner GH (1986) Multicomponent one-pot annulations forming 3–6 bonds. Chem Rev 86: 831–844. doi:10.1021/cr00075a007

    CAS  Article  Google Scholar 

  193. 193.

    Ugi I, Dömling A, Hoerl W (1994) Multicomponent reactions in organic chemistry. Endeavour 18: 115–122

    CAS  Article  Google Scholar 

  194. 194.

    Armstrong RW, Combs AP, Tempest PA, Brown SD, Keating TA (1996) Multiple-component condensation strategies for combinatorial library synthesis. Acc Chem Res 29: 123–131. doi:10.1021/ja9612817

    CAS  Article  Google Scholar 

  195. 195.

    Ugi I, Prakt J (1997) Multicomponent reactions (MCR). 1. Perspectives of multicomponent reactions and their libraries. J Prakt Chem 339: 499–516

    CAS  Article  Google Scholar 

  196. 196.

    Dömling A (1998) Isocyanide based multicomponent reactions in combinatorial chemistry. Comb Chem High Throughput Screen 1: 1–22

    PubMed  Google Scholar 

  197. 197.

    Mosslemin MH, Yavari I, Anary-Abbasinejad M, Nateghi MR (2004) Reaction between tert-butyl isocyanide and 1,1,1-trifluoro-4-aryl-butane-2,4-diones synthesis of new trifluoromethylated furan derivatives. J Fluor Chem 125: 1497–1500. doi:10.1016/j.jfluchem.2004.05.017

    CAS  Article  Google Scholar 

  198. 198.

    Alizadeh A, Rostamni S, Zoreh N, Oskueyan Q (2007) A novel synthesis of aminofurans using a four-component reaction. Synlett 1610–1612. doi:10.1055/s-2007-982540

  199. 199.

    Alizadeh A, Rostamnia S, Zhu LG (2008) Competition of the R3P/DAAD and RNC/DAAD zwitterions in their production and reaction with aromatic carboxylic acids: a novel binucleophilic system for three-component synthesis of 2-aminofurans three-component synthesis of 2-aminofuroans. Synthesis 1788–1792. doi:10.1055/s-2008-1067028

  200. 200.

    Alizadeh A, Rostamnia S, Hu ML (2006) A novel four-component reaction for the synthesis of 2,5-diaminofuran derivatives. Synlett 1592–1594. doi:10.1055/s-2006-941581

  201. 201.

    Alizadeh A, Oskueyan Q, Rostamnia S (2007) Synthesis of nicotinamide and isonicotinamide derivatives via multicomponent reaction of alkyl isocyanides and acetylenic compounds in the presence of nicotinic or isonicotinic acid. Synthesis 2637–2640. doi:10.1055/s-2007-983814

  202. 202.

    Alizadeh A, Oskueyan Q, Rostamnia S, Ghanbari-Niaki A, Mohebbi AR (2008) Synthesis of bis(aminofuryl)bicinchoninic amides by a one-pot three-component reaction of isocyanides, acetylenic esters, and bicinchoninic acid. Synthesis 2929–2932. doi:10.1055/s-2008-1067246

  203. 203.

    Alizadeh A, Rostamnia S, Esmaili AA (2007) Synthesis of functionalized sulfonamides via multicomponent reaction of alkyl isocyanide and dialkyl acetylenedicarboxylate with 4-methylbenzenesulfonic acid monohydrate. Synthesis 709–712. doi:10.1055/s-2007-965912

  204. 204.

    Alizadeh A, Rostamnia S, Zhu LG (2006) Reaction between tert-butyl isocyanide, dialkyl acetylenedicarboxylates, and aromatic carboxylic acids: an efficient method for the synthesis of dialkyl (E)-2-{[benzoyl(tert-butyl)amino]carbonyl}-2-butenedioate derivatives. Tetrahedron 62: 5641–5644. doi:10.1016/j.tet.2006.03.102

    CAS  Article  Google Scholar 

  205. 205.

    Arnett EM, Harrelson JA (1987) Ion pairing and reactivity of enolate anions. A spectacular example of the importance of rotational barriers: the ionization of Meldrum’s acid. J Am Chem Soc 109: 809–812. doi:10.1021/ja00237a028

    CAS  Article  Google Scholar 

  206. 206.

    Davidson D, Bernhard SA (1948) The structure of Meldrum’s supposed β-lactonic acid. J Am Chem Soc 70: 3426–3428. doi:10.1021/ja01190a060

    PubMed  CAS  Article  Google Scholar 

  207. 207.

    Chen BC (1991) Meldrum’s acid in organic synthesis. Heterocycles 32: 529–597

    CAS  Article  Google Scholar 

  208. 208.

    Dauben WG, Kozikowski AP, Zimmerman WT (1975) Meldrum’s acid derivative as a useful dienophilic component; synthesis of δ-damascone. Tetrahedron Lett 16: 515–517. doi:10.1016/S0040-4039(00)71908-3

    Article  Google Scholar 

  209. 209.

    Oikawa Y, Hirasava H, Yonemitso O (1978) Meldrum’s acid in organic synthesis. 1. A convenient one-pot synthesis of ethyl indolepropionates. Tetrahedron Lett 19: 1759–1762. doi:10.1016/0040-4039(78)80037-9

    Article  Google Scholar 

  210. 210.

    Hedge JA, Kruse CW, Snyder HR (1961) Some condensation reactions of isopropylidene malonate. J Org Chem 26: 3166–3170. doi:10.1021/jo01067a032

    CAS  Article  Google Scholar 

  211. 211.

    Shaabani A, Yavari I, Teimouri MB, Bazgir A, Bijanzadeh HR (2001) New and efficient synthesis of dialkyl 2-[1-p-nitrophenyl-2-(alkylamino)-2-oxoethyl]malonates. Tetrahedron 57: 1375–1378. doi:S0040-4020(00)01122-4

    CAS  Article  Google Scholar 

  212. 212.

    Yavari I, Sabbaghan M, Hossaini Z (2007) Reaction between alkyl isocyanides and isopropylidene Meldrum’s acid in the presence of bidentate nucleophiles. Mol Divers 11: 1–5. doi:10.1007/s11030-006-9052-2

    PubMed  CAS  Article  Google Scholar 

  213. 213.

    Yavari I, Habibi A, Hosseini-Tabatabaei MR, Bijanzadeh HR (2003) Reaction between 5-isopropylidene-2,2-dimethyl-1,3-dioxane-4,6-dione and tert-butyl isocyanide in the presence of primary or secondary amines. Monatsh Chem 134: 1651–1658. doi:10.1007/s00706-003-0619-7

    CAS  Google Scholar 

  214. 214.

    Yavari I, Habibi A (2004) Reaction between alkyl isocyanides and isopropylidene Meldrum’s acid in the presence of pyrrole or indoles. Synthesis 989–991. doi:10.1055/s-2004-822336

  215. 215.

    Habibi A, Mousavifar L, Yavari I, Yazdanbakhsh MR (2007) Synthesis of highly functionalized isoxazolinediones from one-pot reaction of alkylidene Meldrum’s cid with alkyl isocyanides in the presence of arylhydroxylamines. Monatsh Chem 138: 603–606. doi:10.1007/s00706-007-0630-5

    CAS  Article  Google Scholar 

  216. 216.

    Habibi A, Seikhhosseini Lori E, Shockravi A (2009) Synthesis of novel furo-pyran derivatives via reaction between an isocyanide and alkylidene-substituted Meldrum’s acid. Tetrahedron Lett 50: 1075–1078. doi:10.1016/j.tetlet.2008.12.082

    CAS  Article  Google Scholar 

  217. 217.

    Lindel T, Breckle G, Hochgürtel M, Volk C, Grube A, Köck M (2004) Decomposition of oroidin in DMSO/TFA. Tetrahedron Lett 45: 8149–8452. doi:10.1016/j.tetlet.2004.09.048

    CAS  Article  Google Scholar 

  218. 218.

    Magnus P, Danikiewicz W, Katoh T, Huffman JC, Folting K (1990) Synthesis of helical poly-beta-pyrroles multiple atropisomerism resulting in helical enantiomorphic conformations. J Am Chem Soc 112: 2465–2468. doi:10.1021/ja00162a083

    CAS  Article  Google Scholar 

  219. 219.

    Trautwein AW, Jung G (1998) Solid-phase synthesis of pyrroles from enaminones and nitroalkenes. Tetrahedron Lett 39: 8263–8266. doi:10.1016/S0040-4039(98)

    CAS  Article  Google Scholar 

  220. 220.

    Alizadeh A, Masrouri H, Rostamnia S, Movahedi F (2006) One-step synthesis of dialkyl 2-[(4-methylphenyl)sulfonyl]-1H-pyrrole-3,4-dicarboxylates by reaction of acetylenedicarboxylates with tosylmethyl isocyanide (TosMIC) and triphenylphosphine. Helv Chim Acta 89: 923–926

    CAS  Article  Google Scholar 

  221. 221.

    Alizadeh A, Hosseinpour R, Rostamnia S (2008) Synthesis of 4-hydroxy-1H-pyrrole-2,3-dicarboxylic acid derivatives: unusual coupling of acetylenic esters and α-amino acids in the presence of cyclohexyl isocyanide or N,N-dicyclohexylcarbodiimide. Synthesis 2462–2466. doi:10.1055/s-2008-1067159

  222. 222.

    Heravi MM, Baghernejad B, Oskooie HA, Hekmatshoar R (2008) A novel and facile synthesis of 2-(cyclohexylamino)-6,7-dihydro-3-aryl-1H-indole-4(5H)-ones via a one-pot multicomponent reaction. Tetrahedron Lett 49: 6101–6103. doi:10.1016/j.tetlet.2008.08.012

    CAS  Article  Google Scholar 

  223. 223.

    Palmer DC (2004) Oxazoles: synthesis, reactions and spectroscopy: Hoboken NJ Ed, J Wiley & Sons Vol 60.

  224. 224.

    Kelly TR, Lang F (1996) Total synthesis of dimethyl sulfomycinamate. J Org Chem 61: 4623–4633. doi:10.1021/jo960433d

    PubMed  CAS  Article  Google Scholar 

  225. 225.

    Morwick T, Hrapchak M, Deturi M, Campbell S (2002) A practical approach to the synthesis of 2,4-disubstituted oxazoles from amino acids. Org Lett 4: 2665–2668. doi:10.1021/ol020092s

    PubMed  CAS  Article  Google Scholar 

  226. 226.

    Falorni M, Giacomelli G, Porcheddu A, Dettori G (2000) New oxazole-based conformationally restricted peptidomimetics: design and synthesis of pseudo peptides. Eur J Org Chem 11: 3217–3227 10.1002/1099-0690(200009)2000:18<3217

    Article  Google Scholar 

  227. 227.

    Maghsoodlou MT, Marandi G, Hazeri N, Aminkhani A, Kabiri R (2007) A facile synthesis of oxazolo[3,2-a][1,10]phenanthrolines via a new multicomponent reaction. Tetrahedron Lett 48: 3197–3199. doi:10.1016/j.tetlet.2007.03.048

    CAS  Article  Google Scholar 

  228. 228.

    Shaabani A, Ajabi S, Farrokhzada F, Bijanzadeh HR (1999) [1+4]Cycloaddition of isocyanides with 2-acetyl-1,4-benzoquinone; a convenient synthesis of isobenzofuran-4,7-quinones. J Chem Res (S) 9: 582–583

    Article  Google Scholar 

  229. 229.

    Shaabani A, Farrokhzad F (1997) [1+4] Cycloaddition of isocyanides with 3-(1-hydroxyethylidene)pentane-2,4-dione. A convenient synthesis of iminolactones. J Chem Res (S) 344- 344

  230. 230.

    Yavari I, Djahaniani H (2006) One-step synthesis of N-alkyl-2-aryl-2-oxoacetamides and N 2,N 4-dialkyl-2-aryl-4H-1,3-benzodioxine-2,4-dicarboxamides. Tetrahedron Lett 47: 1477–1481. doi:10.1016/j.tetlet.2005.12.039

    CAS  Article  Google Scholar 

  231. 231.

    Kazemizadeh A, Ramazani A (2008) Three component reaction of indane-1,2,3-trione, tosylmethyl isocyanide and benzoic acid derivatives. Arkivoc xv: 159–165

    Google Scholar 

  232. 232.

    Souldozi A, Ramazani A (2007) The reaction of (N-isocyanimino)triphenylphosphorane with benzoic acid derivatives: a novel synthesis of 2-aryl-1,3,4-oxadiazole derivatives. Tetrahedron Lett 48: 1549–1551. doi:10.1016/j.tetlet.2007.01.021

    CAS  Article  Google Scholar 

  233. 233.

    Shaabani A, Bazgir A, Soleimani K, Bijanzahdeh HR (2002) Reaction between alkyl isocyanides and 1,1,1,5,5,5-hexafluoropentane-2,4-dione in the presence of water: one-pot synthesis of highly fluorinated γ-dihydroxy-α-hydroxy amides and γ-keto-α-hydroxy amides. J Fluor Chem 116: 93–95. doi:S0022-1139(02)00119-7

    CAS  Article  Google Scholar 

  234. 234.

    Shaabani A, Teimouri MB, Bijanzadeh HR (2003) Novel dispiro iminodioxolane derivatives: synthesis by reaction of isocyanides with ninhydrin. J Chem Res (S) 578-579

  235. 235.

    Adib M, Mahdavi M, Alizadeh Noghani M, Bijanzadeh HR (2007) Reaction between isocyanides and chalcones: an efficient solvent-free synthesis of 5-hydroxy-3,5-diaryl-1,5-dihydro-2H-pyrrol-2-ones. Tetrahedron Lett 48: 8056–8059. doi:10.1016/j.tetlet.2007.09.030

    CAS  Article  Google Scholar 

  236. 236.

    Shaabani A, Rezayan AH, Sarvary A, Rahmati A (2008) Isocyanide-catalyzed reaction of tetracyanoethylene and activated 1,3-dicarbonyl CH-acid compounds: a rapid and efficient synthesis of pyran annulated heterocyclic systems. Synth Commun 38: 274–281. doi:10.1080/00397910701749757

    CAS  Article  Google Scholar 

  237. 237.

    Shaabani A, Soleimani E, Khavasi HR, Hoffmann R-D, Rodewald U, Pottgen R (2006) An isocyanide-based three-component reaction: synthesis of fully substituted N-alkyl-2-triphenylphosphoranylidene glutarimides. Tetrahedron Lett 47: 5493–5496. doi:10.1016/j.tetlet.2006.05.164

    CAS  Article  Google Scholar 

  238. 238.

    Adib M, Aali Koloogani S, Abbasi A, Bijanzadeh HR (2007) One-pot three-component synthesis of 3-amino-5,8-dioxo-5,8-dihydro-1Hpyrazolo[1,2-a]pyridazines. Synthesis 3056–3060. doi:10.1055/s-2007-990775

  239. 239.

    Alizadeh A, Rostamnia S (2008) Facile synthesis of highly functionalized stable ketenimines via a three-component reaction. Synthesis 57–60. doi:10.1055/s-2007-990894

  240. 240.

    Ahmadi E, Ramazani A, Nekomanesh Haghighi M (2007) A novel four-component reaction of diethylamine, an aromatic aldehyde and an alkyl isocyanide with dialkyl acetylenedicarboxylates in the presence of silica gel: an efficient route for the regio- and stereoselective synthesis of sterically congested alkenes. Tetrahedron Lett 48: 6954–6957. doi:10.1016/j.tetlet.2007.07.169

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ahmad Shaabani.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shaabani, A., Maleki, A., Rezayan, A.H. et al. Recent progress of isocyanide-based multicomponent reactions in Iran. Mol Divers 15, 41–68 (2011). https://doi.org/10.1007/s11030-010-9258-1

Download citation

Keywords

  • Isocyanide
  • Multicomponent reaction
  • MCR
  • IMCR
  • Iran