Skip to main content
Log in

Impact of Mercury(II) on proteinase K catalytic center: investigations via classical and Born-Oppenheimer molecular dynamics

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Mercury(II) has a strong affinity for the thiol groups in proteins often resulting in the disruption of their biological functions. In this study we present classical and first-principles, DFT-based molecular dynamics (MD) simulations of a complex of Hg(II) and proteinase K, a well-known serine protease with a very broad and diverse enzymatic activity. It contains a catalytic triad formed by Asp39, His69, and Ser224, which is responsible for its biological activity. It was found previously by X-ray diffraction experiments that the presence of Hg(II) inhibits the enzymatic action of proteinase K by affecting the stereochemistry of the triad. Our simulations predict that (i) the overall structure as well as the protein backbone dynamics are only slightly affected by the mercury cation, (ii) depending on the occupied mercury site, the hydrogen bonds of the catalytic triad are either severely disrupted (both bonds for mercury at site 1, and the His69–Ser224 contact for mercury at site 2) or slightly strengthened (the Asp39–His69 bond when mercury is at site 2), (iii) the network of hydrogen bonds of the catalytic triad is not static but undergoes constant fluctuations, which are significantly modified by the presence of the Hg(II) cation, influencing in turn the triad’s ability to carry out the enzymatic function—these facts explain the experimental findings on the inhibition of proteinase K by Hg(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BOMD:

Born-Oppenheimer molecular dynamics

DFT:

Density functional theory

MD:

Molecular dynamics

QTAIM:

Quantum Theory of Atoms in Molecules

PDB:

Protein Data Bank

RMSD:

Root mean square deviation

RMSF:

Root mean square fluctuation

RGYR:

Radius of gyration

SASA:

Solvent-accessible surface area

References

  1. D’Itri P (1977) Mercury contamination: a human tragedy. Wiley, New York

    Google Scholar 

  2. Jiang G-B, Shi J-B, Feng X-B (2006) Mercury pollution in China. Environ Sci Technol 40: 3672–3678. doi:10.1021/es062707c

    Article  CAS  Google Scholar 

  3. Devlin EW (2006) Acute toxicity, uptake and histopathology of aqueous methyl mercury to fathead minnow embryos. Ecotoxicology 15: 97–110. doi:10.1007/s10646-005-0051-3

    Article  PubMed  CAS  Google Scholar 

  4. Onyido I, Norris AR, Buncel E (2004) Biomolecule–mercury interactions: modalities of DNA base-mercury binding mechanisms. Remediation strategies. Chem Rev 104: 5911–5929. doi:10.1021/cr030443w

    Article  PubMed  CAS  Google Scholar 

  5. Okino S, Iwasaki K, Yagi O, Tanaka H (2000) Development of a biological mercury removal-recovery system. Biotechnol Lett 22: 783–788

    Article  CAS  Google Scholar 

  6. Sigel A, Sigel H (1997) Metal ions in biological systems. Marcel Dekker, New York

    Google Scholar 

  7. Spiro TG (1980) Nucleic acid–metal ion interactions. Wiley, New York

    Google Scholar 

  8. Eichhorn GL (1973) Inorganic biochemistry, vol 2, chap 33. Elsevier, Amsterdam, p 1210

  9. Kurzel RB, Cetrulo CL (1981) Critical review. The effect of environmental pollutants on human reproduction, including birth defects. Environ Sci Technol 15: 626–640. doi:10.1021/es00088a001

    Article  CAS  Google Scholar 

  10. Zahir F, Rizwi SJ, Haq SK, Khan RH (2005) Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 20: 351–360. doi:10.1016/j.etap.2005.03.007

    Article  CAS  Google Scholar 

  11. Saxena AK, Singh TP, Peters K, Fittkau S, Visanji M, Wilson KS, Betzel C (1996) Structure of a ternary complex of proteinase K, mercury, and a substrate-analogue hexa-peptide at 2.2 Å resolution. Proteins Struct Funct Genet 25: 195–201

    Article  PubMed  CAS  Google Scholar 

  12. Ebeling W, Hennrich N, Klockow M, Metz H, Orth HD, Lang H (1974) Proteinase K from Tritirachium album Limber. Eur J Biochem 47: 91–97

    Article  PubMed  CAS  Google Scholar 

  13. Jany K-D, Lederer G, Mayer B (1986) Amino acid sequence of proteinase K from the mold Tritirachium album Limber: proteinase K—a subtilisin-related enzyme with disulfide bonds. FEBS Lett 199: 139–144. doi:10.1016/0014-5793(86)80467-7

    Article  CAS  Google Scholar 

  14. Müller A, Saenger W (1993) Studies on the inhibitory action of mercury upon proteinase K. J Biol Chem 268: 26150–26154

    PubMed  Google Scholar 

  15. Betzel C, Gourinath S, Kumar P, Kaur P, Perbandt M, Eschenburg S, Singh TP (2001) Structure of a serine protease Proteinase K from Tritirachium album Limber at 0.98 Å resolution. Biochemistry 40: 3080–3088. doi:10.1021/bi002538n

    Article  PubMed  CAS  Google Scholar 

  16. Neurath H (1986) The versatility of proteolytic enzymes. J Cell Biochem 32: 35–49. doi:10.1002/jcb.240320105

    Article  PubMed  CAS  Google Scholar 

  17. Russel AJ, Fersht AR (1987) Rational modification of enzyme catalysis by engineering surface charge. Nature 328: 496–500. doi:10.1038/328496a0

    Article  Google Scholar 

  18. Ni B, Kramer JR, Bell RA, Werstiuk NH (2006) Protonolysis of the Hg–C bond of chloromethylmercury and dimethylmercury. A DFT and QTAIM study. J Phys Chem A 110: 9451–9458. doi:10.1021/jp061852+

    Article  PubMed  CAS  Google Scholar 

  19. Tai H-C, Lim C (2006) Computational studies of the coordination stereochemistry, bonding, and metal selectivity of mercury. J Phys Chem A 110: 452–462. doi:10.1021/jp0529826

    Article  PubMed  CAS  Google Scholar 

  20. Marx D, Hutter J (2000) In Grotendorst J (ed) NIC Series, vol 1, Modern methods and algorithms of quantum chemistry. John von Neuman Institute for Computing, FZ Jülich, pp 329–477. http://www.fz-juelich.de/nic-series/Volume1/

  21. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun 167: 103–128. doi:10.1016/j.cpc.2004.12.014

    Article  CAS  Google Scholar 

  22. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98: 5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37: 785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  24. Andrae D, Häussermann U, Dolg M, Stoll H, Preuss H (1990) Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta 77: 123–141. doi:10.1007/BF01114537

    Article  CAS  Google Scholar 

  25. Besler BH, Merz KMJr, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11: 431–439. doi:10.1002/jcc.540110404

  26. Gaussian 03, Revision C.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford, CT, USA

  27. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 926–935. doi:10.1063/1.445869

    Article  CAS  Google Scholar 

  28. Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9, University of California, San Francisco

  29. Darden T, York D, Pedersen LG (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98: 10089–10092. doi:10.1063/1.464397

    Article  CAS  Google Scholar 

  30. Essman U, Perela L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103: 8577–8592. doi:10.1063/1.470117

    Article  Google Scholar 

  31. Sagui C, Darden T (1999) Molecular dynamics simulations of biomolecules: long-range electrostatic effects. Annu Rev Biophys Biomol Struct 28: 155–179. doi:10.1146/annurev.biophys.28.1.155

    Article  PubMed  CAS  Google Scholar 

  32. Adelman SA, Doll JD (1976) Generalized Langevin equation approach for atom/solid-surface scattering: general formulation for classical scattering off harmonic solids. J Chem Phys 64: 2375–2388. doi:10.1063/1.432526

    Article  CAS  Google Scholar 

  33. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103: 4613–4621. doi:10.1063/1.470648

    Article  CAS  Google Scholar 

  34. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23: 327–341. doi:10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  35. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33–38. doi:10.1016/0263-7855(96)00018-5

    Article  PubMed  CAS  Google Scholar 

  36. Lippert G, Hutter J, Parrinello M (1997) A hybrid Gaussian and plane wave density functional scheme. Mol Phys 92: 477–487. doi:10.1080/00268979709482119

    CAS  Google Scholar 

  37. Genovese L, Deutsch T, Neelov A, Goedecker S, Beylkin G (2006) Efficient solution of Poisson’s equation with free boundary conditions. J Chem Phys 125: 074105. doi:10.1063/1.2335442

    Article  PubMed  Google Scholar 

  38. Goedecker S, Teter M, Hutter J (1996) Separable dual-space Gaussian pseudopotentials. Phys Rev B 54: 1703–1710. doi:10.1103/PhysRevB.54.1703

    Article  CAS  Google Scholar 

  39. Hartwigsen J, Goedecker S, Hutter J (1998) Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys Rev B 58: 3641–3662. doi:10.1103/PhysRevB.58.3641

    Article  CAS  Google Scholar 

  40. Krack M (2005) Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor Chem Acc 114: 145–152. doi:10.1007/s00214-005-0655-y

    Article  CAS  Google Scholar 

  41. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38: 3098–3100. doi:10.1103/PhysRevA.38.3098

    Article  PubMed  CAS  Google Scholar 

  42. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52: 255–268. doi:10.1080/00268978400101201

    Article  Google Scholar 

  43. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81: 511–519. doi:10.1063/1.447334

    Article  Google Scholar 

  44. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. J Chem Phys 23: 1833–1840. doi:10.1063/1.1740588

    Article  CAS  Google Scholar 

  45. CP2K version 2.0.0 (Development Version), the CP2K developers group (2008) CP2K is freely available from http://cp2k.berlios.de/

  46. Gnuplot 4.0. Copyright © 1986–1993, 1998, 2004, Williams T, Kelley C

  47. Herrera FE, Zucchelli S, Jezierska A, Lavina ZS, Gustincich S, Carloni P (2007) On the oligomeric state of DJ-1 protein and its mutants associated with Parkinson disease: a combined computational and in vitro study. J Biol Chem 282: 24905–24914. doi:10.1074/jbc.M701013200

    Article  PubMed  CAS  Google Scholar 

  48. Marx D (2006) Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. ChemPhysChem 7: 1848–1870. doi:10.1002/cphc.200600128

    Article  PubMed  CAS  Google Scholar 

  49. Betzel C, Pal GP, Saenger W (1988) Three-dimensional structure of proteinase K at 0.15-nm resolution. Eur J Biochem 178: 155–171. doi:10.1111/j.1432-1033.1988.tb14440.x

    Article  PubMed  CAS  Google Scholar 

  50. Ertekin A, Nussinov R, Haliloglu T (2006) Association of putative concave protein-binding sites with the fluctuation behavior of residues. Protein Sci 15: 2265–2277. doi:10.1110/ps.051815006

    Article  PubMed  CAS  Google Scholar 

  51. Kalosakas G, Rasmussen KØ, Bishop AR, Choi CH, Usheva A (2004) Sequence-specific thermal fluctuations identify start sites for DNA transcription. Europhys Lett 68: 127–133. doi:10.1209/epl/i2004-10167-8

    Article  CAS  Google Scholar 

  52. Pordea A, Creus M, Panek J, Duboc C, Mathis D, Novič M, Ward TR (2008) Artificial metalloenzyme for enantioselective sulfoxidation based on vanadyl-loaded streptavidin. J Am Chem Soc 130: 8085–8088. doi:10.1021/ja8017219

    Article  PubMed  CAS  Google Scholar 

  53. Miño G, Contreras R (2009) On the role of short and strong hydrogen bonds on the mechanism of action of a model chymotrypsine active site. J Phys Chem A 113: 5769–5772. doi:10.1021/jp902756x

    Article  PubMed  Google Scholar 

  54. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27: 355–384. doi:10.1016/S0168-6445(03)00046-9

    Article  PubMed  CAS  Google Scholar 

  55. Howell SC, Mesleh MF, Opella SJ (2005) NMR structure determination of a membrane protein with two transmembrane helices in micelles: MerF of the bacterial mercury detoxification system. Biochemistry 44: 5196–5206. doi:10.1021/bi048095v

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Jezierska-Mazzarello.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 12 kb)

ESM 1 (PDF 856 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panek, J.J., Mazzarello, R., Novič, M. et al. Impact of Mercury(II) on proteinase K catalytic center: investigations via classical and Born-Oppenheimer molecular dynamics. Mol Divers 15, 215–226 (2011). https://doi.org/10.1007/s11030-010-9256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-010-9256-3

Keywords

Navigation