Skip to main content
Log in

CORAL: QSPR models for solubility of [C60] and [C70] fullerene derivatives

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Quantitative structure–property relationships (QSPRs) between the molecular structure of [C60] and [C70] fullerene derivatives and their solubility in chlorobenzene (mg/mL) have been established by means of CORAL (CORrelations And Logic) freeware. The CORAL models are based on representation of the molecular structure by simplified molecular input line entry system (SMILES). Three random splits into the training and the external validation sets have been examined. The ranges of statistical characteristics of these models are as follows: n = 18, r 2 = 0.748–0.815, s = 15.1 –17.5 (mg/mL), F = 47–71 (training set); n = 9, r 2 = 0.806–0.936, s = 12.5–17.5 (mg/mL), F = 29–103 (validation set).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Troshin PA, Hoppe H, Renz J et al (2009) Material solubility- photovoltaic performance relationship in the design of novel fullerene derivatives for bulk heterojunction solar cells. Adv Funct Mater 19: 779–788. doi:10.1002/adfm.200801189

    Article  CAS  Google Scholar 

  2. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28: 31–36. doi:10.1021/ci00057a005

    CAS  Google Scholar 

  3. Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Comput Sci 29: 97–101. doi:10.1021/ci00062a008

    CAS  Google Scholar 

  4. Weininger D (1990) SMILES. 3. DEPICT. Graphical depiction of chemical structures. J Chem Inf Comput Sci 30: 237–243. doi:10.1021/ci00067a005

    CAS  Google Scholar 

  5. ACD/ChemSketch Freeware, version 11.00 (2007) Advanced Chemistry Development, Inc., Toronto, ON, Canada. www.acdlabs.com

  6. Vidal D, Thormann M, Pons M (2005) LINGO, an efficient holographic text based method to calculate biophysical properties and intermolecular similarities. J Chem Inf Model 45: 386–393. doi:10.1021/ci0496797

    Article  PubMed  CAS  Google Scholar 

  7. Vidal D, Thormann M, Pons M (2006) A novel search engine for virtual screening of very large databases. J Chem Inf Model 46: 836–843. doi:10.1021/ci050458q

    Article  PubMed  CAS  Google Scholar 

  8. Vidal D, Blobel J, Pérez Y et al (2007) Structure-based discovery of new small molecule inhibitors of low molecular weight protein tyrosine phosphatise. Eur J Med Chem 42: 1102–1108. doi:10.1016/j.ejmech.2007.01.017

    Article  PubMed  CAS  Google Scholar 

  9. Toropov AA, Leszczynska D, Leszczynski J (2007) QSPR study on solubility of fullerene C60 in organic solvents using optimal descriptors calculated with SMILES. Chem Phys Lett 441: 119–122. doi:10.1016/j.cplett.2007.04.094

    Article  CAS  Google Scholar 

  10. Toropov AA, Toropova AP, Raska I Jr (2008) QSPR modeling of octanol/water partition coefficient for vitamins by optimal descriptors calculated with SMILES. Eur J Med Chem 43: 714–740

    Article  PubMed  CAS  Google Scholar 

  11. Toropov AA, Benfenati E (2008) Additive SMILES-based optimal descriptors in QSAR modeling bee toxicity: Using rare SMILES attributes to define the applicability domain. Bioorg Med Chem 16: 4801–4809. doi:10.1016/j.bmc.2008.03.048

    Article  PubMed  CAS  Google Scholar 

  12. Toropov AA, Toropova AP, Benfenati E (2008) QSPR modeling for enthalpies of formation of organometallic compounds by means of SMILES-based optimal descriptors. Chem Phys Lett 461: 343–347. doi:10.1016/j.cplett.2008.07.027

    Article  CAS  Google Scholar 

  13. Rasulev BF, Toropov AA, Hamme AT II et al (2008) Multiple linear regression analysis and optimal descriptors: predicting the cholesteryl ester transfer protein inhibition activity. QSAR Comb Sci 27: 595–606. doi:10.1002/qsar.200710006

    Article  CAS  Google Scholar 

  14. Toropov AA, Rasulev BF, Leszczynski J (2007) QSAR modeling of acute toxicity for nitrobenzene derivatives towards rats: comparative analysis by MLRA and optimal descriptors. QSAR Comb Sci 26: 686–693. doi:10.1002/qsar.200610135

    Article  CAS  Google Scholar 

  15. Liu H, Yao X, Zhang R et al (2005) Accurate quantitative structure-property relationship model to predict the solubility of C60 in various solvents based on a novel approach using a least-squares support vector machine. J Phys Chem B 109: 20565–20571. doi:10.1021/jp052223n

    Article  PubMed  CAS  Google Scholar 

  16. Gharagheizi F, Alamdari RF (2008) A molecular-based model for prediction of solubility of C60 fullerene in various solvents. Fuller Nanotub Car N 16: 40–57. doi:10.1080/15363830701779315

    Article  CAS  Google Scholar 

  17. Gutman I, Toropov AA, Toropova AP (2005) The graph of atomic orbitals and its basic properties. 1. Wiener index. MATCH Commun Math Comput Chem 53: 215–224

    CAS  Google Scholar 

  18. Durdagi S, Mavromoustakos T, Papadopoulos MG (2008) 3D QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies of fullerene-based HIV-1 PR inhibitors. Bioorg Med Chem Lett 18: 6283–6289. doi:10.1016/j.bmcl.2008.09.107

    Article  PubMed  CAS  Google Scholar 

  19. Durdagi S, Mavromoustakos T, Chronakis N et al (2008) Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations. Bioorg Med Chem 16: 9957–9974. doi:10.1016/j.bmc.2008.10.039

    Article  PubMed  CAS  Google Scholar 

  20. Kuz’min VE, Muratov EN, Artemenko AG et al (2008) The effect of nitroaromatics’ composition on their toxicity in vivo: novel, efficient non-additive 1D QSAR analysis. Chemosphere 72: 1373–1380. doi:10.1016/j.chemosphere.2008.04.045

    Article  PubMed  Google Scholar 

  21. Afantitis A, Melagraki G, Sarimveis H et al (2006) A novel QSAR model for evaluating and predicting the inhibition activity of dipeptidyl aspartyl fluoromethylketones. QSAR Comb Sci 25: 928–935. doi:10.1002/qsar.200530208

    Article  CAS  Google Scholar 

  22. Afantitis A, Melagraki G, Sarimveis H et al (2006) Prediction of intrinsic viscosity in polymer-solvent combinations using a QSPR model. Polymer 47: 3240–3248. doi:10.1016/j.polymer.2006.02.060

    Article  CAS  Google Scholar 

  23. Puzyn T, Mostrag A, Suzuki N et al (2008) QSPR-based estimation of the atmospheric persistence for chloronaphthalene congeners. Atmos Environ 42: 6627–6636. doi:10.1016/j.atmosenv.2008.04.048

    Article  CAS  Google Scholar 

  24. Puzyn T, Suzuki N, Haranczyk M (2008) How do the partitioning properties of polyhalogenated POPs change when chlorine is replaced with bromine. Environ Sci Tech 42: 5189–5195. doi:10.1021/es8002348

    Article  CAS  Google Scholar 

  25. Puzyn T, Suzuki N, Haranczyk M et al (2008) Calculation of quantum-mechanical descriptors for QSPR at the DFT level: is it necessary?. J Chem Inf Model 48: 1174–1180. doi:10.1021/ci800021p

    Article  PubMed  CAS  Google Scholar 

  26. Gutman I, Furtula B, Toropov AA et al (2005) The graph of atomic orbitals and its basic properties. 2. Zagreb indices. MATCH Commun Math Comput Chem 53: 225–230

    CAS  Google Scholar 

  27. Castro EA, Toropova AP, Toropov AA et al (2005) QSPR modeling of Gibbs free energy of organic compounds by weighting of nearest neighboring codes. Struct Chem 16: 305–324. doi:10.1007/s11224-005-4462-0

    Article  CAS  Google Scholar 

  28. Roy K, Toropov AA (2005) QSPR modeling of the water solubility of diverse functional aliphatic compounds by optimization of correlation weights of local graph invariants. J Mol Model 11: 89–96. doi:10.1007/s00894-004-0224-7

    Article  PubMed  CAS  Google Scholar 

  29. Duchowicz PR, Castro EA, Toropov AA et al (2004) QSPR modeling the aqueous solubility of alcohols by optimization of correlation weights of local graph invariants. Mol Divers 8: 325–330. doi:10.1023/B:MODI.0000047498.49219.ab

    Article  PubMed  CAS  Google Scholar 

  30. Toropov AA, Benfenati E (2004) QSAR modeling of aldehyde toxicity against a protozoan, Tetrahymena pyriformis by optimization of correlation weights of nearest neighboring codes. J Mol Struct THEOCHEM 679: 225–228. doi:10.1016/j.theochem.2004.04.020

    Article  CAS  Google Scholar 

  31. Toropov AA, Benfenati E (2004) QSAR modeling of aldehyde toxicity by means of optimisation of correlation weights of nearest neighbouring codes. J Mol Struct THEOCHEM 676: 165–169. doi:10.1016/j.theochem.2004.01.023

    Article  CAS  Google Scholar 

  32. Roy PP, Roy K (2009) QSAR Studies of CYP2D6 Inhibitor Aryloxypropanolamines Using 2D and 3D Descriptors. Chem Biol Drug Des 73: 442–455. doi:10.1111/j.1747-0285.2009.00791.x

    Article  PubMed  CAS  Google Scholar 

  33. Toropov AA, Toropova AP, Benfenati E (2009) Additive SMILES-based carcinogenicity models: probabilistic principles in the search for robust predictions. Int J Mol Sci 10: 3106–3127. doi:10.3390/ijms10073106

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey A. Toropov.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toropova, A.P., Toropov, A.A., Benfenati, E. et al. CORAL: QSPR models for solubility of [C60] and [C70] fullerene derivatives. Mol Divers 15, 249–256 (2011). https://doi.org/10.1007/s11030-010-9245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-010-9245-6

Keywords

Navigation