Advertisement

Molecular Diversity

, Volume 15, Issue 1, pp 3–33 | Cite as

The Gewald multicomponent reaction

  • Yijun Huang
  • Alexander DömlingEmail author
Article

Abstract

The Gewald reaction of sulfur, cyanoacetic acid derivatives, and oxo-component (G-3CR) yielding highly substituted 2-aminothiophene derivatives has seen diverse applications in combinatorial and medicinal chemistry. Its products are of great use in pharmaceutical industry mainly as small molecular weight inhibitors. We herein review synthetic scope and variations, usage, and structural biology of Gewald products.

Keywords

Gewald three-component reaction Multicomponent reaction 2-Aminothiophene Sulfur Cyanoacetamide Malonodinitrile Structure–activity relationship Multicomponent reaction MCR 

Abbreviations

G-3CR

Gewald three-component reaction

MCR

Multicomponent reactions

PknG

Protein kinase G

IKKβ

I\({\kappa}\) B kinase β

HT

Hydrotalcite

MPS

Morpholine-polysulfide

PEG

Polyethylene glycol

PTP1B

Protein tyrosine phosphatase 1B

IL

Ionic liquid

MW

Microwave irradiation

hGCGR

Human glucagon receptor

TNF-α

Tumor necrosis factor-α

JNK

c-Jun N-terminal kinase

KSP

Kinesin spindle protein

PDE

Phosphodiesterase enzyme

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meltzer HY, Fibiger HC (1996) Olanzapine: a new atypical antipsychotic drug. Neuropsychopharmacology 14: 83–85. doi: 10.1016/0893-133X(95)00197-L PubMedCrossRefGoogle Scholar
  2. 2.
    Eli Lilly and Company (2008) Annual Report. http://investor.lilly.com/annuals.cfm Retrieved 2009-11-26
  3. 3.
    Li XH, Conklin D, Pan HL, Eisenach JC (2003) Allosteric adenosine receptor modulation reduces hypersensitivity following peripheral inflammation by a central mechanism. J Pharmacol Exp Ther 305: 950–955. doi: 10.1124/jpet.102.047951 PubMedCrossRefGoogle Scholar
  4. 4.
    Beasley MW, Hause DP, Reynolds DJ (2008) Allosteric adenosine A1 receptor enhancer pharmaceutical compositions for the treatment of pain. King Pharmaceuticals Research and Development, Inc., USA. Application: WO 2008147939 A1 20081204, 58 ppGoogle Scholar
  5. 5.
    Mudumbi RV, Montamat SC, Bruns RF, Vestal RE (1993) Cardiac functional-responses to adenosine by PD-81723, an allosteric enhancer of the adenosine-A1-receptor. Am J Physiol 264: H1017–H1022PubMedGoogle Scholar
  6. 6.
    Figler H, Olsson RA, Linden J (2003) Allosteric enhancers of A1 adenosine receptors increase receptor-G protein coupling and counteract guanine nucleotide effects on agonist binding. Mol Pharmacol 64: 1557–1564. doi: 10.1124/mol.64.6.1557 PubMedCrossRefGoogle Scholar
  7. 7.
    Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K, Klebl B, Thompson C, Bacher G, Pieters J (2004) Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304: 1800–1804. doi: 10.1126/science.1099384 PubMedCrossRefGoogle Scholar
  8. 8.
    Podolin PL, Callahan JF, Bolognese BJ, Li YH, Carlson K, Davis TG, Mellor GW, Evans C, Roshak AK (2005) Attenuation of murine collagen-induced arthritis by a novel, potent, selective small molecule inhibitor of I kappa B kinase 2, TPCA-1 (2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide), occurs via reduction of proinflammatory cytokines and antigen-induced T cell proliferation. J Pharmacol Exp Ther 312: 373–381. doi: 10.1124/jpet.104.074484 PubMedCrossRefGoogle Scholar
  9. 9.
    Colombo M, Peretto I (2008) Chemistry strategies in early drug discovery: an overview of recent trends. Drug Discov Today 2008 (13): 677–684. doi: 10.1016/j.drudis.2008.03.007 CrossRefGoogle Scholar
  10. 10.
    Hulme C, Gore V (2003) Multi-component reactions: emerging chemistry in drug discovery from xylocain to crixivan. Curr Med Chem 10: 51–80. doi: 10.2174/0929867033368600 PubMedCrossRefGoogle Scholar
  11. 11.
    Dömling A (1006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106: 17–89. doi: 10.1021/cr0505728 CrossRefGoogle Scholar
  12. 12.
    Gewald K, Schinke E, Böttcher H (1966) 2-Amino-Thiophene aus methylenaktiven nitrilen carbonylverbindungen und schwefel. Chem Ber 99: 94–100CrossRefGoogle Scholar
  13. 13.
    Li JJ (2002) Name reactions: a collection of detailed reaction mechanisms. Springer, New YorkGoogle Scholar
  14. 14.
    Mayer R, Gewald K (1967) Action of carbon disulfide and sulfur on enamines ketimines and CH acids. Angew Chem Int Ed 6: 294–306. doi: 10.1002/anie.196702941 CrossRefGoogle Scholar
  15. 15.
    Tinsley JM (2005) Gewald aminothiophene synthesis. In: Li JJ, Corey EJ (eds) Name reactions in heterocyclic chemistry. Wiley, New York, pp 193–198Google Scholar
  16. 16.
    Peet NP, Sunder S, Barbuch RJ, Vinogradoff AP (1986) Mechanistic observations in the Gewald syntheses of 2-aminothiophenes. J Heterocycl Chem 23: 129–134. doi: 10.1002/jhet.5570230126 CrossRefGoogle Scholar
  17. 17.
    Sabnis RW, Rangnekar DW, Sonawane ND (1999) 2-Aminothiophenes by the Gewald reaction. J Heterocycl Chem 36: 333–345. doi: 10.1002/jhet.5570360203 CrossRefGoogle Scholar
  18. 18.
    Sibor J, Pazdera P (1996) Syntheses of some new five-membered heterocycles containing selenium and tellurium. Molecules 1: 157–162. doi: 10.1007/s007830050031 Google Scholar
  19. 19.
    Pinto IL, Jarvest RL, Serafinowska HT (2000) The synthesis of 5-alkoxy and 5-amino substituted thiophenes. Tetrahedron Lett 41: 1597–1600. doi: 10.1016/S0040-4039(99)02338-2 CrossRefGoogle Scholar
  20. 20.
    Tormyshev VM, Trukhin DV, Rogozhnikova OV, Mikhalina TV, Troitskaya TI (2006) Anthony flinn aryl alkyl ketones in a one-pot Gewald synthesis of 2-aminothiophenes. Synlett 16: 2559–2564. doi: 10.1055/s-2006-951484 CrossRefGoogle Scholar
  21. 21.
    Puterova Z, Andicsova A, Vegh D (2008) Synthesis of pi-conjugated thiophenes starting from substituted 3-oxopropanenitriles via Gewald reaction. Tetrahedron 64: 11262–11269. doi: 10.1016/j.tet.2008.09.032 CrossRefGoogle Scholar
  22. 22.
    Özbek H, Veljkovic IS, Reissig HU (2008) Gewald synthesis of aminothiophene carboxylic acids providing new dipeptide analogues. Synlett 20: 3145–3148. doi: 10.1055/s-0028-1087243 Google Scholar
  23. 23.
    Eller GA, Holzer W (2006) First synthesis of 3-acetyl-2-aminothiophenes using the Gewald reaction. Molecules 11: 371–376. doi: 10.3390/11050371 PubMedCrossRefGoogle Scholar
  24. 24.
    Al-Mousawi S, Moustafa MS, Elnagdi MH (2008) Studies with enamines: functionally substituted enamines as aldehyde equivalents in Gewald reactions. Arkivoc x: 17–25Google Scholar
  25. 25.
    Robin A, Meslin JC, Deniaud D (2004) 2-Aminothiabutadiene as useful building block in the synthesis of 2-aminothiopyrans and 2-aminothiophenes. Synthesis 10: 1633–1640. doi: 10.1055/s-2004-829112 Google Scholar
  26. 26.
    Rajagopal R, Jyothi TM, Daniel T, Srinivasan KV, Rao BS (2001) Calcined Mg-Al hydrotalcite as a heterogeneous base catalyst for Gewald aminothiophene synthesis. Synth Commun 31: 3113–3117. doi: 10.1081/SCC-100105884 CrossRefGoogle Scholar
  27. 27.
    Feroci M, Chiarotto I, Rossi L, Inesi A (2008) Activation of elemental sulfur by electrogenerated cyanomethyl anion: synthesis of substituted 2-aminothiophenes by the Gewald reaction. Adv Synth Catal 350: 2740–2746. doi: 10.1002/adsc.200800503 CrossRefGoogle Scholar
  28. 28.
    McKibben BP, Cartwright CH, Castelhano AL (1999) Practical synthesis of tetrasubstituted thiophenes for use in compound libraries. Tetrahedron Lett 40: 5471–5474. doi: 10.1016/S0040-4039(99)01108-9 CrossRefGoogle Scholar
  29. 29.
    Baraldi PG, Zaida AN, Lamprontia I, Fruttaroloa F, Pavania MG, Tabrizia MA, Shryockb JC, Leungc E, Romagnolia R (2000) Synthesis and biological effects of a new series of 2-amino-3-benzoylthiophenes as allosteric enhancers of A(1)-adenosine receptor. Bioorg Med Chem Lett 10: 1953–1957. doi: 10.1016/S0960-894X(00)00379-6 PubMedCrossRefGoogle Scholar
  30. 30.
    Castanedo GM, Sutherlin DP (2001) Synthesis of tetrasubstituted thiophenes on solid-support using the Gewald reaction. Tetrahedron Lett 42: 7181–7184. doi: 10.1016/S0040-4039(01)01470-8 CrossRefGoogle Scholar
  31. 31.
    Iversen LF, Andersen HS, Branner S, Mortensen SB, Peters G.H, Norris K, Olsen OH, Jeppesen CB, Lundt BF, Ripka W, Moller KB, Moller NP (2000) Structure-based design of a low molecular weight, nonphosphorus, nonpeptide, and highly selective inhibitor of protein-tyrosine phosphatase 1B. J Biol Chem 275: 10300–10307. doi: 10.1074/jbc.275.14.10300 PubMedCrossRefGoogle Scholar
  32. 32.
    Webb TR, Melman N, Lvovskiy D, Ji XD, Jacobson KA (2000) The utilization of a unified pharmacophore query in the discovery of new antagonists of the adenosine receptor family. Bioorg Med Chem Lett 10: 31–34. doi: 10.1016/S0960-894X(99)00583-1 PubMedCrossRefGoogle Scholar
  33. 33.
    Hu Y, Wei P, Huang H, Han SQ, Ouyang PK (2006) Synthesis of 2-aminothiophenes on ionic liquid phase support using the Gewald reaction. Synth Commun 36: 1543–1548. doi: 10.1080/00397910600588819 CrossRefGoogle Scholar
  34. 34.
    Treu M, Karner T, Kousek R, Berger H, Mayer M, McConnell DB, Stadler A (2008) Microwave-assisted parallel synthesis of fused heterocycles in a novel parallel multimode reactor. J Comb Chem 10: 863–868. doi: 10.1021/cc800081b PubMedCrossRefGoogle Scholar
  35. 35.
    Kathiravan MK, Shishoo CJ, Chitre TS (2007) Efficient synthesis of substituted 2-amino3-carbethoxythiophenes. Synth Commun 37: 4273–4279. doi: 10.1080/00397910701575889 CrossRefGoogle Scholar
  36. 36.
    Hesse S, Perspicace E, Kirsch G (2007) Microwave-assisted synthesis of 2-aminothiophene-3-carboxylic acid derivatives, 3H-thieno[2,3-d]pyrimidin-4-one and 4-chlorothieno[2,3-d]pyrimidine. Tetrahedron Lett 48: 5261–5264. doi: 10.1016/j.tetlet.2007.05.136 CrossRefGoogle Scholar
  37. 37.
    Madabhushi S, Rao RM, Nanduri HKB, Kumbhare RM (2007) Microwave accelerated Gewald reaction: synthesis of 2-aminothiophenes. Tetrahedron Lett 48: 3171–3172. doi: 10.1016/j.tetlet.2007.03.052 CrossRefGoogle Scholar
  38. 38.
    Hoener APF, Henkel B, Gauvin JC (2003) Novel one-pot microwave assisted Gewald synthesis of 2-acyl amino thiophenes on solid support. Synlett 1: 63–66. doi: 10.1055/s-2003-36229 Google Scholar
  39. 39.
    Zhang H, Yang G, Chen J, Chen Z (2004) Synthesis of thiophene derivatives on soluble polymer-support using Gewald reaction. Synthesis 18: 3055–3059. doi: 10.1055/s-2004-834895 Google Scholar
  40. 40.
    Phoujdar MS, Kathiravan MK, Bariwal JB, Shah AK, Jain KS (2008) Microwave-based synthesis of novel thienopyrimidine bioisosteres of gefitinib. Tetrahedron Lett 49: 1269–1273. doi: 10.1016/j.tetlet.2007.11.135 CrossRefGoogle Scholar
  41. 41.
    Lutjens H, Zickgraf A, Figler H, Linden J, Olsson RA, Scammells PJ (2003) 2-Amino-3-benzoylthiophene allosteric enhancers of A(1) adenosine agonist binding: new 3, 4-, and 5-modifications. J Med Chem 46: 1870–1877. doi: 10.1021/jm020295m PubMedCrossRefGoogle Scholar
  42. 42.
    Aumann KM, Scammells PJ, White JM, Schiesser CH (2007) On the stability of 2-aminoselenophene-3-carboxylates: potential dual-acting selenium-containing allosteric enhancers of A(1) adenosine receptor binding. Org Biomol Chem 5: 1276–1281. doi: 10.1039/b700812k PubMedCrossRefGoogle Scholar
  43. 43.
    Angell RM, Atkinson FL, Brown MJ, Chuang TT, Christopher JA, Cichy-Knight M, Dunn AK, Hightower KE, Malkakorpi S, Musgrave JR, Neu M, Rowland P, Shea RL, Smith JL, Somers DO, Thomas SA, Thompson G, Wang RL (2007) N-(3-cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)amides as potent, selective, inhibitors of JNK nd JNK3. Bioorg Med Chem Lett 17: 1296–1301. doi: 10.1016/j.bmcl.2006.12.003 PubMedCrossRefGoogle Scholar
  44. 44.
    Pinkerton AB, Lee TT, Hoffman TZ, Wang Y, Kahraman M (2007) Synthesis and SAR of thiophene containing kinesin spindle protein (KSP) inhibitors. Bioorg Med Chem Lett 17: 3562–3569. doi: 10.1016/j.bmcl.2007.04.076 PubMedCrossRefGoogle Scholar
  45. 45.
    Tumey LN, Bhagirath N, Wu BQ, Boschelli DH (2008) A facile, scalable preparation of 4-oxo-4,7-dihydrothieno[2,3-b]pyridine-5-carbonitriles. Tetrahedron Lett 49: 6850–6852. doi: 10.1016/j.tetlet.2008.09.107 CrossRefGoogle Scholar
  46. 46.
    Pokhodylo NT, Matiychuk VS, Obushak MD (2008) New convenient synthesis of 2,3-diaminothieno [2,3-d]pyrimidin-4(3H)-one derivates from substituted alkyl 2-(1H-tetrazol-1-yl)thiophene-3-carboxylates. Tetrahedron 64: 1430–1434. doi: 10.1016/j.tet.2007.11.045 CrossRefGoogle Scholar
  47. 47.
    Pokhodylo NT, Matiychuk VS, Obushak MD (2009) of ethyl 4,5-disubstituted 2-azido-3-thiophenecarboxylates and use in the synthesis of thieno[3,2-e][1,2,3]triazolo[1,5-a]pyrimidin-5(4H)-ones. Tetrahedron 65: 2678–2683. doi: 10.1016/j.tet.2009.01.086 CrossRefGoogle Scholar
  48. 48.
    Romagnoli R, Baraldi PG, Pavani MG, Tabrizi MA, Preti D, Fruttarolo F, Piccagli L, Jung MK, Hamel E, Borgatti M, Gambari R (2006) Synthesis and biological evaluation of 2-amino-3-(3′,4′,5′-trimethoxybenzoyl)-5-aryl thiophenes as a new class of potent antitubulin agents. J Med Chem 49: 3906–3915. doi: 10.1021/jm060355e PubMedCrossRefGoogle Scholar
  49. 49.
    De la Fuente R, Namkung W, Mills A, Verkman AS (2008) Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel. Mol Pharmacol 73: 758–768. doi: 10.1124/mol.107.043208 CrossRefGoogle Scholar
  50. 50.
    Duffy JL, Kirk BA, Konteatis Z, Campbell EL, Liang R, Brady EJ, Candelore MR, Ding VDH, Jiang GQ, Liu F, Qureshi SA, Saperstein R, Szalkowski D, Tong S, Tota LM, Xie D, Yang XD, Zafian P, Zheng S, Chapman KT, Zhang BB, Tata JR (2005) Discovery and investigation of a novel class of thiophene-derived antagonists of the human glucagon receptor. Bioorg Med Chem Lett 15: 1401–1405. doi: 10.1016/j.bmcl.2005.01.003 PubMedCrossRefGoogle Scholar
  51. 51.
    Chakrabarti JK, Hotten TM, Tupper DE (1997) Preparation of 2-methylthienobenzodiazepine as central nervous system agent. (Lilly Industries Ltd., UK). Application: US. 11 pp, Cont-in-part of US Ser No 44,844, abandonedGoogle Scholar
  52. 52.
    Gütschow M, Neumann U (1998) Novel thieno[2,3-d][1,3]oxazin-4-ones as inhibitors of human leukocyte elastase. J Med Chem 41: 1729–1740. doi: 10.1021/jm9708341 PubMedCrossRefGoogle Scholar
  53. 53.
    Gütschow M, Kuerschner L, Neumann U, Pietsch M, Loser R, Koglin N, Eger K (1999) 2-(Diethylamino)thieno[1,3]oxazin-4-ones as stable inhibitors of human leukocyte elastase. J Med Chem 42: 5437–5447. doi: 10.1021/jm991108w PubMedCrossRefGoogle Scholar
  54. 54.
    Dai YJ, Guo Y, Frey RR, Ji ZQ, Curtin ML, Ahmed AA, Albert DH, Arnold L, Arries SS, Barlozzari T, Bauch JL, Bouska JJ, Bousquet PF, Cunha GA, Glaser KB, Guo J, Li JL, Marcotte PA, Marsh KC, Moskey MD, Pease LJ, Stewart KD, Stoll VS, Tapang P, Wishart N, Davidsen SK, Michaelides MR (2005) Thienopyrimidine ureas as novel and potent multitargeted receptor tyrosine kinase inhibitors. J Med Chem 48: 6066–6083. doi: 10.1021/jm050458h PubMedCrossRefGoogle Scholar
  55. 55.
    Barnes DM, Haight AR, Hameury T, McLaughlin MA, Mei JZ, Tedrow JS, Toma JDR (2006) New conditions for the synthesis of thiophenes via the Knoevenagel/Gewald reaction sequence. Application to the synthesis of a multitargeted kinase inhibitor. Tetrahedron 62: 11311–11319. doi: 10.1016/j.tet.2006.07.008 CrossRefGoogle Scholar
  56. 56.
    Buchstaller HP, Siebert CD, Steinmetz R, Frank I, Berger ML, Gottschlich R, Leibrock J, Krug M, Steinhilber D, Noe CR (2006) Synthesis of thieno[2,3-b]pyridinones acting as cytoprotectants and as inhibitors of [H-3]Glycine binding to the N-methyl-d-aspartate (NMDA) receptor. J Med Chem 2006(49): 864–871. doi: 10.1021/jm0503493 CrossRefGoogle Scholar
  57. 57.
    Vaghasiya SJ, Dodiya DK, Trivedi AR, Shah VH (2008) Synthesis and biological screening of some novel pyrazolo[3′,4′:4,5]thieno[2,3-d]pyrimidin-8-ones via a Gewald reaction. Arkivoc xii: 1–8Google Scholar
  58. 58.
    Dodiya DK, Trivedi AR, Jarsania SH, Vaghasia SJ, Shaw VH (2008) Characterization and biological evaluation of some novel pyrazolo[3’,4’:4,5]thieno[2,3-d]pyrimidin-8-ones synthesized via the Gewald reaction. J Serb Chem Soc 73: 683–690. doi: 10.2298/JSC0807683D CrossRefGoogle Scholar
  59. 59.
    Mohareb RM, Sherif SM, Gaber HM, Ghabrial SS, Aziz SI (2003) Utility of a 2-aminothiophene-3-carboxamide in the synthesis of thienopyridines and thienopyrimidines. Heteroatom Chem 14: 459–467. doi: 10.1002/hc.10179 CrossRefGoogle Scholar
  60. 60.
    Abdel-Hafez SH (2005) Selenium-containing heterocycles. Synthesis and reactions of 2-amino-4,5,6,7-tetrahydro-1-benzoselenophene-3-carbonitrile with anticipated biological activity. Russ J Org Chem 41: 396–401CrossRefGoogle Scholar
  61. 61.
    Duval E, Case A, Stein RL, Cuny GD (2005) Structure–activity relationship study of novel tissue transglutaminase inhibitors. Bioorg Med Chem Lett 15: 1885–1889. doi: 10.1016/j.bmcl.2005.02.005 PubMedCrossRefGoogle Scholar
  62. 62.
    Dang Q, Carruli E, Tian F, Dang FW, Gibson T, Li WY, Bai HC, Chung M, Hecker SJ (2009) A tandem decarboxylation and inverse electron-demand Diels-Alder reaction of amino-thiophenecarboxylic acids with 1,3,5-triazines. Tetrahedron Lett 50: 2874–2876. doi: 10.1016/j.tetlet.2009.03.180 CrossRefGoogle Scholar
  63. 63.
    Dzhavakhishvili SG, Gorobets NY, Shishkina SV, Shishkin OV, Desenko SM, Groth UM (2009) Diversification of a thieno[2,3-d]pyrimidin-4-one scaffold via regioselective alkylation reactions. J Comb Chem 11: 508–514. doi: 10.1021/cc9000373 PubMedCrossRefGoogle Scholar
  64. 64.
    Fujita M, Seki T, Inada H, Ikeda N (2002) Synthesis and bioactivities of novel 4,5,6,7-tetrahydrothieno [2,3-c]pyridines as inhibitors of tumor necrosis factor-alpha (TNF-alpha) production. Bioorg Med Chem Lett 12: 1607–1611. doi: 10.1016/S0960-894X(02)00228-7 PubMedCrossRefGoogle Scholar
  65. 65.
    Fujita M, Seki T, Ikeda N (2002) Synthesis and bioactivities of novel bicyclic thiophenes and 4,5,6,7-tetrahydrothieno[2,3-c]pyridines as inhibitors of tumor necrosis factor-alpha (TNF-alpha) production. Bioorg Med Chem Lett 12: 1897–1900. doi: 10.1016/S0960-894X(02)00332-3 PubMedCrossRefGoogle Scholar
  66. 66.
    Fujita M, Hirayama T, Ikeda N (2002) Design, synthesis and bioactivities of novel diarylthiophenes: inhibitors of tumor necrosis factor-alpha (TNF-alpha) production. Bioorg Med Chem 10: 3113–3122. doi: 10.1002/chin.200301105 PubMedCrossRefGoogle Scholar
  67. 67.
    Hwang KJ, Lee TS, Kim KW, Kim BT, Lee CM, Park EY, Woo RS (2001) 4-Hydroxy-6-oxo-6,7-dihydro-thieno[2,3-b] pyrimidine derivatives: Synthesis and their biological evaluation for the glycine site acting on the N-methyl-D-aspartate (NMDA) receptor. Arch Pharm Res 24: 270–275. doi: 10.1007/BF02975090 PubMedCrossRefGoogle Scholar
  68. 68.
    Zhao G, Iyengar RR, Judd AS, Cool B, Chiou W, Kifle L, Frevert E, Sham H, Kym PR (2007) Discovery and SAR development of thienopyridones: a class of small molecule AMPK activators. Bioorg Med Chem Lett 17: 3254–3257. doi: 10.1016/j.bmcl.2007.04.011 PubMedCrossRefGoogle Scholar
  69. 69.
    Pietsch M, Gütschow M (2005) Synthesis of tricyclic 1,3-oxazin-4-ones and kinetic analysis of cholesterol esterase and acetylcholinesterase inhibition. J Med Chem 48: 8270–8288. doi: 10.1021/jm0508639 PubMedCrossRefGoogle Scholar
  70. 70.
    Gangjee A, Qiu YB, Li W, Kisliuk RL (2008) Potent dual thymidylate synthase and dihydrofolate reductase inhibitors: Classical and nonclassical 2-amino-4-oxo-5-arylthio-substituted-6-methylthieno[2,3-d]pyrimidine antifolates. J Med Chem 51: 5789–5797. doi: 10.1021/jm8006933 PubMedCrossRefGoogle Scholar
  71. 71.
    Deng YJ, Zhou XL, Desmoulin SK, Wu JM, Cherian C, Hou ZJ, Matherly LH, Gangjee A (2009) Synthesis and biological activity of a novel series of 6-substituted thieno[2,3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors over the reduced folate carrier and proton-coupled folate transporter for cellular entry. J Med Chem 52: 2940–2951. doi: 10.1021/jm8011323 PubMedCrossRefGoogle Scholar
  72. 72.
    Kemnitzer W, Sirisoma N, May C, Tseng B, Drewe J, Cai SX (2009) Discovery of 4-anilino-N-methylthieno[3,2-d]pyrimidines and 4-anilino-N-methylthieno[2,3-d]pyrimidines as potent apoptosis inducers. Bioorg Med Chem Lett 19: 3536–3540. doi: 10.1016/j.bmcl.2009.04.145 PubMedCrossRefGoogle Scholar
  73. 73.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28: 235–242. doi: 10.1093/nar/28.1.235 PubMedCrossRefGoogle Scholar
  74. 74.
    Browning DD (2008) Protein kinase G as a therapeutic target for the treatment of metastatic colorectal cancer. Expert Opin Ther Targets 12: 367–376. doi: 10.1517/14728222.12.3.367 PubMedCrossRefGoogle Scholar
  75. 75.
    Scherr N, Honnappa S, Kunz G, Mueller P, Jayachandran R, Winkler F, Pieters J, Steinmetz MO (2007) Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 104: 12151–12156. doi: 10.1073/pnas.0702842104 PubMedCrossRefGoogle Scholar
  76. 76.
    Zhang S, Zhang ZY (2007) PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov Today 12: 373–381. doi: 10.1016/j.drudis.2007.03.011 PubMedCrossRefGoogle Scholar
  77. 77.
    Andersen HS, Olsen OH, Iversen LF, Sorensen ALP, Mortensen SB, Christensen MS, Branner S, Hansen TK, Lau JF, Jeppesen L, Moran EJ, Su J, Bakir F, Judge L, Shahbaz M, Collins T, Vo T, Newman MJ, Ripka WC, Moller NPH (2002) Discovery and SAR of a novel selective and orally bioavailable nonpeptide classical competitive inhibitor class of protein-tyrosine phosphatase 1B. J Med Chem 45: 4443–4459. doi: 10.1021/jm0209026 PubMedCrossRefGoogle Scholar
  78. 78.
    Bishop AC, Blair ER (2006) A gatekeeper residue for inhibitor sensitization of protein tyrosine phosphatases. Bioorg Med Chem Lett 16: 4002–4006. doi: 10.1016/j.bmcl.2006.05.011 PubMedCrossRefGoogle Scholar
  79. 79.
    Peters GH, Iversen LF, Branner S, Andersen HS, Mortensen SB, Olsen OH, Moller KB, Moller NPH (2000) Residue 259 is a key determinant of substrate specificity of protein-tyrosine phosphatases 1B and alpha. J Biol Chem 275(24): 18201–18209. doi: 10.1074/jbc.M910273199 PubMedCrossRefGoogle Scholar
  80. 80.
    Iversen LF, Andersen HS, Moller KB, Olsen OH, Peters GH, Branner S, Mortensen SB, Hansen TK, Lau J, Ge Y, Holsworth DD, Newman NJ, Moller NPH (2001) Steric hindrance as a basis for structure-based design of selective inhibitors of protein-tyrosine phosphatases. Biochemistry 40: 14812–14820. doi: 10.1021/bi011389l PubMedCrossRefGoogle Scholar
  81. 81.
    Longenecker KL, Stamper GF, Hajduk PJ, Fry EH, Jakob CG, Harlan JE, Edalji R, Bartley DM, Walter KA, Solomon LR, Holzman TF, Gu YG, Lerner CG, Beutel BA, Stoll VS (2005) Structure of MurF from Streptococcus pneumoniae co-crystallized with a small molecule inhibitor exhibits interdomain closure. Protein Sci 14: 3039–3047. doi: 10.1110/ps.051604805 PubMedCrossRefGoogle Scholar
  82. 82.
    Gu YG, Florjancic AS, Clark RF, Zhang TY, Cooper CS, Anderson DD, Lerner CG, McCall JO, Cai YN, Black-Schaefer CL, Stamper GF, Hajduk PJ, Beutel BA (2004) Structure-activity relationships of novel potent MurF inhibitors. Bioorg Med Chem Lett 14: 267–270. doi: 10.1016/j.bmcl.2003.09.073 PubMedCrossRefGoogle Scholar
  83. 83.
    Jacoby GA (2009) AmpC beta-Lactamases. Clin Microbiol Rev 22: 161–182. doi: 10.1128/CMR.00036-08 PubMedCrossRefGoogle Scholar
  84. 84.
    Babaoglu K, Shoichet BK (2006) Deconstructing fragment-based inhibitor discovery. Nat Chem Biol 2: 720–723. doi: 10.1038/nchembio831 PubMedCrossRefGoogle Scholar
  85. 85.
    Jiang C, You QD, Li ZY, Guo QL (2006) Kinesin spindle protein inhibitors as anticancer agents. Expert Opin Ther Pat 16: 1517–1532. doi: 10.1517/13543776.16.11.1517 CrossRefGoogle Scholar
  86. 86.
    Naganuma K, Omura A, Maekawara N, Saitoh M, Ohkawa N, Kubota T, Nagumo H, Kodama T, Takemura M, Ohtsuka Y, Nakamura J, Tsujita R, Kawasaki K, Yokoi H, Kawanishi M (2009) Discovery of selective PDE4B inhibitors. Bioorg Med Chem Lett 19: 3174–3176. doi: 10.1016/j.bmc.2009.03.061 PubMedCrossRefGoogle Scholar
  87. 87.
    Kranz M, Wall M, Evans B, Miah A, Ballantine S, Delves C, Dombroski B, Gross J, Schneck J, Villa JP, Neu M, Somers DO (2009) Identification of PDE4B Over 4D subtype-selective inhibitors revealing an unprecedented binding mode. Bioorg Med Chem 17: 5336–5341. doi: 10.1016/j.bmc.2009.03.061 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences and ChemistryUniversity of PittsburghPittsburghUSA

Personalised recommendations