Skip to main content
Log in

Multicomponent synthesis of dihydrobenzoxazepinones, bearing four diversity points, as potential α-helix mimics

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A very short convergent synthesis of dihydrobenzoxazepinones, bearing four diverse diversity points, based on coupling the Ugi reaction with a Mitsunobu cyclization, was developed. These compounds are potential α-helix mimics, where three of the four appendages are expected to imitate the residues in i, i + 4 and i + 7 positions. A library of 22 compounds bearing lipophilic substituents, designed to interact with the hydrophobic cleft of anti-apoptotic protein Bcl-xL, was synthesized. Preliminary biochemical tests, based on competitive binding, have already been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yin H, Hamilton AD (2005) Strategies for targeting protein–protein interactions with synthetic agents. Angew Chem Int Ed Engl 44: 4130–4163. doi:10.1002/anie.200461786

    Article  CAS  PubMed  Google Scholar 

  2. Boger DL, Desharnais J, Capps K (2003) Solution-phase combinatorial libraries: modulating cellular signaling by targeting protein-protein or protein-DNA interactions. Angew Chem Int Ed Engl 42: 4138–4176. doi:10.1002/anie.200300574

    Article  CAS  PubMed  Google Scholar 

  3. Pagliaro L, Felding J, Audouze K, Nielsen SJ, Terry RB, Krog-Jensen C, Butcher S (2004) Emerging classes of protein-protein interaction inhibitors and new tools for their development. Curr Opin Chem Biol 8: 442–449. doi:10.1016/j.cbpa.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  4. Fletcher S, Hamilton AD (2005) Protein surface recognition and proteomimetics: mimics of protein surface structure and function. Curr Opin Chem Biol 9: 632–638. doi:10.1016/j.cbpa.2005.10.006

    Article  CAS  PubMed  Google Scholar 

  5. Khorchid A, Beauparlant P (2004) Bcl-2-targeted cancer therapeutics. Expert Opin Ther Patents 14: 805–818. doi:10.1517/13543776.14.6.805

    Article  CAS  Google Scholar 

  6. Shepherd NE, Hoang HN, Desai VS, Letouze E, Young PR, Fairlie DP (2006) Modular alpha-helical mimetics with antiviral activity against respiratory syncitial virus. J Am Chem Soc 128: 13284–13289. doi:10.1021/ja064058a

    Article  CAS  PubMed  Google Scholar 

  7. Sadowsky JD, Fairlie WD, Hadley EB, Lee HS, Umezawa N, Nikolovska-Coleska Z, Wang SM, Huang DCS, Tomita Y, Gellman SH (2007) (alpha/beta+alpha)-Peptide antagonists of BH3 Domain/Bcl-x(L) recognition: toward general strategies for foldamer-based inhibition of protein-protein interactions. J Am Chem Soc 129: 139–154. doi:10.1021/ja0662523

    Article  CAS  PubMed  Google Scholar 

  8. Ponassi R, Biasotti B, Tomati V, Bruno S, Poggi A, Malacarne D, Cimoli G, Salis A, Pozzi S, Miglino M et al (2008) A novel Bim-BH3-derived Bcl-X-L inhibitor biochemical characterization, in vitro, in vivo and ex-vivo anti-leukemic activity. Cell Cycle 7: 3211–3224

    CAS  PubMed  Google Scholar 

  9. Davis JM, Tsou LK, Hamilton AD (2007) Synthetic non-peptide mimetics of alpha-helices. Chem Soc Rev 36: 326–334. doi:10.1039/b608043j

    Article  CAS  PubMed  Google Scholar 

  10. Yin H, Lee GI, Sedey KA, Rodriguez JM, Wang HG, Sebti SM, Hamilton AD (2005) Terephthalamide derivatives as mimetics of helical peptides: disruption of the Bcl-x(L)/Bak interaction. J Am Chem Soc 127: 5463–5468. doi:10.1021/ja0446404

    Article  CAS  PubMed  Google Scholar 

  11. Yin H, Lee GI, Park HS, Payne GA, Rodriguez JM, Sebti SM, Hamilton AD (2005) Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Angew Chem Int Ed Engl 44: 2704–2707. doi:10.1002/anie.200462316

    Article  CAS  PubMed  Google Scholar 

  12. Davis JM, Truong A, Hamilton AD (2005) Synthesis of a 2,3′;6′, 3′′-terpyridine scaffold as an alpha-helix mimetic. Org Lett 7: 5405–5408. doi:10.1021/ol0521228

    Article  CAS  PubMed  Google Scholar 

  13. Yin H, Lee GI, Sedey KA, Kutzki O, Park HS, Omer BP, Ernst JT, Wang HG, Sebti SM, Hamilton AD (2005) Terphenyl-based bak BH3 alpha-helical proteomimetics as low-molecular-weight antagonists of Bcl-X-L. J Am Chem Soc 127: 10191–10196. doi:10.1021/ja050122x

    Article  CAS  PubMed  Google Scholar 

  14. Ahn JM, Han SY (2007) Facile synthesis of benzamides to mimic an alpha-helix. Tetrahedron Lett 48: 3543–3547. doi:10.1016/j.tetlet.2007.03.108

    Article  CAS  Google Scholar 

  15. Oguri H, Tanabe S, Oomura A, Umetsu M, Hirama M (2006) Synthesis and evaluation of alpha-helix mimetics based on a trans-fused polycyclic ether: sequence-selective binding to aspartate pairs in alpha-helical peptides. Tetrahedron Lett 47: 5801–5805. doi:10.1016/j.tetlet.2006.05.170

    Article  CAS  Google Scholar 

  16. Biros SM, Moisan L, Mann E, Carella A, Zhai D, Reed JC, Rebek J (2007) Heterocyclic alpha-helix mimetics for targeting protein-protein interactions. Bioorg Med Chem Lett 17: 4641–4645. doi:10.1016/j.bmcl.2007.05.075

    Article  CAS  PubMed  Google Scholar 

  17. Volonterio A, Moisan L, Rebek J (2007) Synthesis of pyridazine-based scaffolds as alpha-helix mimetics. Org Lett 9: 3733–3736. doi:10.1021/ol701487g

    Article  CAS  PubMed  Google Scholar 

  18. Prakesch M, Denisov AY, Naim M, Gehring K, Arya P (2008) The discovery of small molecule chemical probes of Bcl-X-L and Mcl-1. Bioorg Med Chem 16: 7443–7449. doi:10.1016/j.bmc.2008.06.023

    Article  CAS  PubMed  Google Scholar 

  19. Grasberger BL, Lu TB, Schubert C, Parks DJ, Carver TE, Koblish HK, Cummings MD, LaFrance LV, Milkiewicz KL, Calvo RR et al (2005) Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem 48: 909–912. doi:10.1021/jm049137g

    Article  CAS  PubMed  Google Scholar 

  20. Cummings MD, Schubert C, Parks DJ, Calvo RR, LaFrance LV, Lattanze J, Milkiewicz KL, Lu TB (2006) Substituted 1,4-benzodiazepine-2,5-diones as alpha-helix mimetic antagonists of the HDM2-p53 protein-protein interaction. Chem Biol Drug Design 67: 201–205. doi:10.1111/j.1747-0285.2006.00365.x

    Article  CAS  Google Scholar 

  21. Raboisson P, Marugan JJ, Schubert C, Koblish HK, Lu TB, Zhao SY, Player MR, Maroney AC, Reed RL, Huebert ND et al (2005) Structure-based design, synthesis, and biological evaluation of novel 1,4-diazepines as HDM2 antagonists. Bioorg Med Chem Lett 15: 1857–1861. doi:10.1016/j.bmcl.2005.02.018

    Article  CAS  PubMed  Google Scholar 

  22. Antuch W, Menon S, Chen QZ, Lu YC, Sakamuri S, Beck B, Schauer-Vukasinovic V, Agarwal S, Hess S, Domling A (2006) Design and modular parallel synthesis of a MCR derived alpha-helix mimetic protein-protein interaction inhibitor scaffold. Bioorg Med Chem Lett 16: 1740–1743. doi:10.1016/j.bmcl.2005.11.102

    Article  CAS  PubMed  Google Scholar 

  23. Domling A, Antuch W, Beck B, Schauer-Vukasinovic V (2008) Isosteric exchange of the acylsulfonamide moiety in Abbott’s Bcl-X-L protein interaction antagonist. Bioorg Med Chem Lett 18: 4115–4117. doi:10.1016/j.bmcl.2008.05.096

    Article  PubMed  Google Scholar 

  24. Zhu J, Bienaymé H (2005) Multicomponent reactions. Wiley, Weinheim

    Book  Google Scholar 

  25. Hulme C, Dietrich J (2009) Emerging molecular diversity from the intra-molecular Ugi reaction: iterative efficiency in medicinal chemistry. Mol Divers 13: 195–207. doi:10.1007/s11030-009-9111-6

    Article  CAS  PubMed  Google Scholar 

  26. Akritopolou-Zanze I (2008) Isocyanide-based multicomponent reactions in drug discovery. Curr Opin Chem Biol 12: 324–331. doi:10.1016/j.cbpa.2008.02.004

    Article  Google Scholar 

  27. Domling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106: 17–89. doi:10.1021/cr0505728

    Article  PubMed  Google Scholar 

  28. Hulme C, Nixey T (2003) Rapid assembly of molecular diversity via exploitation of isocyanide-based multi-component reactions. Curr Opin Drug Discov Develop 6: 921–929

    CAS  Google Scholar 

  29. Zhu JP (2003) Recent developments in the isonitrile-based multicomponent synthesis of heterocycles. Eur J Org Chem 1133–1144. doi:10.1002/ejoc.200390167

  30. Banfi L, Basso A, Guanti G, Lecinska P, Riva R (2008) Multicomponent synthesis of benzoxazinones via tandem Ugi/Mitsunobu reactions: an unexpected cine-substitution. Mol Divers 12: 187–190. doi:10.1007/s11030-008-9087-7

    Article  CAS  PubMed  Google Scholar 

  31. Banfi L, Basso A, Guanti G, Lecinska P, Riva R, Rocca V (2007) Multicomponent synthesis of novel 2- and 3-substituted dihydrobenzo[1,4]oxazepinones and tetrahydrobenzo[1,4]diazepin-5-ones and their conformational analysis. Heterocycles 73: 699–728

    Article  CAS  Google Scholar 

  32. Banfi L, Basso A, Guanti G, Kielland N, Repetto C, Riva R (2007) Ugi multicomponent reaction followed by an intramolecular nucleophilic substitution: convergent multicomponent synthesis of 1-sulfonyl 1,4-diazepan-5-ones and of their benzo-fused derivatives. J Org Chem 72: 2151–2160. doi:10.1021/jo062626z

    Article  CAS  PubMed  Google Scholar 

  33. Banfi L, Basso A, Guanti G, Lecinska P, Riva R (2006) Multicomponent synthesis of dihydrobenzoxazepinones by coupling Ugi and Mitsunobu reactions. Org Biomol Chem 4: 4236–4240. doi:10.1039/b613056a

    Article  CAS  PubMed  Google Scholar 

  34. Developed and sold by CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140 USA. URL: http://www.cambridgesoft.com/

  35. Kutzki O, Park HS, Ernst JT, Orner BP, Yin H, Hamilton AD (2002) Development of a potent Bcl-x(L) antagonist based on alpha-helix mimicry. J Am Chem Soc 124: 11838–11839. doi:10.1021/ja026861k

    Article  CAS  PubMed  Google Scholar 

  36. Lugovskoy AA, Degterev AI, Fahmy AF, Zhou P, Gross JD, Yuan J, Wagner G (2002) A novel approach for characterizing protein ligand complexes: molecular basis for specificity of small-molecule Bcl-2 inhibitors. J Am Chem Soc 124: 1234–1240. doi:10.1021/ja011239y

    Article  CAS  PubMed  Google Scholar 

  37. Feng W, Huang SY, Wu H, Zhang MJ (2007) Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of beclin-1. J Mol Biol 372: 223–235. doi:10.1016/j.jmb.2007.06.069

    Article  CAS  PubMed  Google Scholar 

  38. Buckley D, Thomas J (1971) Synthesis of alkylsalicylic acids as antimicrobial agents. J Med Chem 14: 265. doi:10.1021/jm00285a031

    Article  CAS  PubMed  Google Scholar 

  39. Tramposch KN, F. KH, Blau M (1983) Radioiodine-labeled N,N-dimethyl-N’-[2-hydroxy-3-alkyl-5-iodobenzyl]-1,3-propanediamines for brain perfusion imaging. J Med Chem 26: 121–125. doi:10.1021/jm00356a001

    Article  CAS  PubMed  Google Scholar 

  40. Gano KW, Myles DC (2000) Progress toward the synthesis of a biomimetic membrane. Tetrahedron Lett 41: 4247–4250. doi:10.1016/S0040-4039(00)00597-9

    Article  CAS  Google Scholar 

  41. Hofslokken NU, Skattebol L (1999) Convenient method for the ortho-formylation of phenols. Acta Chem Scand 53: 258–262. doi:10.3891/acta.chem.scand.53-0258

    Article  CAS  Google Scholar 

  42. Verner E, Katz BA, Spencer JR, Allen D, Hataye J, Hruzewicz W, Hui HC, Kolesnikov A, Li Y, Luong C et al (2001) Development of serine protease inhibitors displaying a multicentered short (<2.3 angstrom) hydrogen bond binding mode: inhibitors of urokinase-type plasminogen activator and factor Xa. J Med Chem 44: 2753–2771. doi:10.1021/jm0100638

    Article  CAS  PubMed  Google Scholar 

  43. Kundu NG, Pal M, Mahanty JS, De M (1997) Palladium-catalysed heteroannulation with acetylenic compounds: synthesis of benzofurans. J Chem Soc, Perkin Trans 1: 2815–2820. doi:10.1039/a703305b

    Article  Google Scholar 

  44. Feldman KS, Eastman KJ, Lessene G (2002) Diazonamide synthesis studies: use of Negishi coupling to fashion diazonamide-related biaryls with defined axial chirality. Org Lett 4: 3525–3528. doi:10.1021/ol026694t

    Article  CAS  PubMed  Google Scholar 

  45. Lee YR, Wang X (2005) A short synthetic route to biologically active (±)-daurichromenic acid as highly potent anti-HIV agent. Org Biomol Chem 3: 3955–3957. doi:10.1039/b508577b

    Article  CAS  PubMed  Google Scholar 

  46. Incarvito C, Lam M, Rhatigan B, Rheingold AL, Qin CJ, Gavrilova AL, Bosnich B (2001) Bimetallic reactivity. Preparations, properties and structures of complexes formed by unsymmetrical binucleating ligands bearing 4-and 6-coordinate sites supported by alkoxide bridges. J Chem Soc, Dalton Trans 3478–3488. doi:10.1039/b103164n

  47. Buchanan JL, Vu CB, Merry TJ, Corpuz EG, Pradeepan SG, Mani UN, Yang M, Plake HR, Varkhedkar VM, Lynch BA et al (1999) Structure-activity relationships of a novel class of Src SH2 inhibitors. Bioorg Med Chem Lett 9: 2359–2364. doi:10.1016/S0960-894X(99)00389-3

    Article  CAS  PubMed  Google Scholar 

  48. Liu J, Ikemoto N, Petrillo D, Armstrong JD (2002) Improved syntheses of alpha-BOC-aminoketones from alpha-BOC-amino-Weinreb amides using a pre-deprotonation protocol. Tetrahedron Lett 43: 8223–8226. doi:10.1016/S0040-4039(02)02031-2

    Article  CAS  Google Scholar 

  49. Bartoli G, Bosco M, Carlone A, Locatelli M, Melchiorre P, Sambri L (2004) Asymmetric catalytic synthesis of enantiopure N-protected 1,2-amino alcohols. Org Lett 6: 3973–3975. doi:10.1021/ol048322l

    Article  CAS  PubMed  Google Scholar 

  50. Kauch M, Hoppe D (2006) Synthesis of halogenated phenols by directed ortho-lithiation and ipso-iododesilylation reactions of O-aryl N-isopropylcarbamates. Synthesis 1578–1589. doi:10.1055/s-2006-926462

  51. Brown P, Davies DT, Ohanlon PJ, Wilson JM (1996) The chemistry of pseudomonic acid. 15. Synthesis and antibacterial activity of a series of 5-alkyl, 5-alkenyl, and 5-heterosubstituted oxazoles. J Med Chem 39: 446–457. doi:10.1021/jm9503862

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Banfi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banfi, L., Basso, A., Cerulli, V. et al. Multicomponent synthesis of dihydrobenzoxazepinones, bearing four diversity points, as potential α-helix mimics. Mol Divers 14, 425–442 (2010). https://doi.org/10.1007/s11030-009-9210-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-009-9210-4

Keywords

Navigation