Skip to main content

A computational study on cannabinoid receptors and potent bioactive cannabinoid ligands: homology modeling, docking, de novo drug design and molecular dynamics analysis

Abstract

When X-ray structure of a ligand-bound receptor is not available, homology models of the protein of interest can be used to obtain the ligand-binding cavities. The steroelectronic properties of these cavities are directly related to the performed molecular model coordinates. Thus, the use of different template structures for homology may result in variation of ligand-binding modes. We have recently reported the MD simulations of a potent CB ligand at bovine rhodopsin-based CB1 and CB2 receptors (Durdagi et al., Bioorg Med Chem 16:7377–7387, 2008). In this present study, a homology modeling study based on the β2-adrenergic receptor for both CB1 and CB2 receptors was performed, and the results were compared with rhodopsin-based models. In addition, the role of membrane bilayers to the adopted conformations of potent AMG3 CB ligand has been analyzed for receptor-free and membrane-associated receptor systems. The performed MD trajectory analysis results have shown that gauche conformations at the terminal segment of the alkyl side chain of AMG3 are not favored in solution. Different adopting dihedral angles defined between aromatic and dithiolane rings at the active sites of the CB1 and CB2 receptors, which are adapted lead to different alkyl side chain orientations and thus, may give clues to the medicinal chemists to synthesize more selective CB ligands. The binding sites of receptors derived by rhodopsin-based models have been regenerated using the β2-adrenergic based template receptors. The re-obtained models confirmed the ligand-binding pockets that were derived based on rhodopsin.

This is a preview of subscription content, access via your institution.

Abbreviations

CB:

Cannabinoid

CB1:

First cannabionoid receptor

CB2:

Second cannabinoid receptor

MD:

Molecular dynamics

Δ8-THC:

Δ8-Tetrahydrocannabinol

AMG3:

(–)-2-(6a,7,10,10a-Tetrahydro-6,6,9-trimethylhydroxy-6H-dibenzo[b,d]pyranyl)−2-hexyl-1,3dithiolane

References

  1. 1

    Höltje HD, Sippl W, Rognan D, Folkers G (2003) Molecular modeling: basic principles and applications. Wiley-VCH Verlog GmbH, Weinheim

    Google Scholar 

  2. 2

    Ghose AK, Crippen GM, Revenkar GR, Smee DF, McKernan PA, Robins RK (1989) Analysis of the in vitro antiviral activity of certain ribonucleosides against parainfluenza virus using a novel computer aided receptor modeling procedure. J Med Chem 32: 746–756

    Article  PubMed  CAS  Google Scholar 

  3. 3

    Lenkinski RE, Stephens RL, Krishna NR (1981) Conformation of angiotensin II. Evidence for a specific hydrogen bonded conformation. Biochemistry 20: 3122–3126

    Article  PubMed  CAS  Google Scholar 

  4. 4

    Sakarellos C, Lintner K, Piriou F, Fermandjian S (1983) Conformation of the central sequence of angiotensin II and analogs. Biopolymers 22: 663–687

    Article  PubMed  CAS  Google Scholar 

  5. 5

    Fermandjian S, Fromageot P, Tistchenko AM, Leicknam JP, Lutz M (1972) Angiotensin II conformations. Infrared and Raman studies. Eur J Biochem 28: 174–182

    Article  PubMed  CAS  Google Scholar 

  6. 6

    Mavromoustakos T, Theodoropoulou E, Zervou M, Kourouli T, Papahatjis DP (1999) Structure elucidation and conformational properties of synthetic cannabinoids (-)-2-(6a,7,10,10a-tetrahydro-6,6,9-trimethyl-1-hydroxy-6H-dibenzo [b,d]pyranyl)-2-hexyl-1,3-dithiolane and its methylated analog. J Pharm Biomed Anal 18: 947–956

    Article  PubMed  CAS  Google Scholar 

  7. 7

    Papahatjis DP, Nikas SP, Kourouli T, Chari R, Xu W, Pertwee RG, Makriyannis A (2003) Pharmacophoric requirements for the cannabinoid side chain. Probing the cannabinoid receptor subsite at C1′. J Med Chem 46: 3221–3229

    Article  PubMed  CAS  Google Scholar 

  8. 8

    Honoria KM, da Silva ABF (2002) A theoretical study on the influence of the frontier orbitals HOMO and LUMO and the size of C4 and C2 substituents in the psychoactivity of cannabinoid compounds. Theochemistry 578: 111–117

    Google Scholar 

  9. 9

    Keimowitz AR, Martin BR, Razdan RK, Crocker PJ, Mascarella SW, Thomas BF (2000) QSAR analysis of Δ8-THC analogues: relationship of side-chain conformation to cannabinoid receptor affinity and pharmacological potency. J Med Chem 43: 59–70

    Article  PubMed  CAS  Google Scholar 

  10. 10

    Schmetzer S, Greenidge P, Kovar KA, Schulze-Alexandru M, Folkers G (1997) Structure-activity relationships of cannabinoids: a joint CoMFA and pseudoreceptor modelling study. J Comput Aided Mol Des 11: 278–292

    Article  PubMed  CAS  Google Scholar 

  11. 11

    Najmanovich R, Kuttner J, Sobolev V, Edelman M (2000) Side-chain flexibility in proteins upon ligand binding. Proteins Struct Funct Bioinf 39: 261–268

    Article  CAS  Google Scholar 

  12. 12

    Jorgensen WL (1991) Rusting of the lock and key model for protein-ligand binding. Science 254: 954–963

    Article  PubMed  CAS  Google Scholar 

  13. 13

    Hasegawa K, Arakawa M, Funatsu K (2003) Simultaneous determination of bioactive conformations and alignment rules by multi-way PLS modeling. Compt Biol Chem 27: 211–216

    Article  CAS  Google Scholar 

  14. 14

    Papahatjis DP, Kourouli T, Abadji V, Goutopoulos A, Makriyannis A (1998) Pharmacophoric requirements for cannabinoid side chains: multiple bond and C1′-substituted Δ8-tetrahydrocannabinols. J Med Chem 41: 1195–1200

    Article  PubMed  CAS  Google Scholar 

  15. 15

    Razdan RK (1986) Structure-activity relationships in cannabinoids. Pharmacol Rev 38: 75–149

    PubMed  CAS  Google Scholar 

  16. 16

    Makriyannis A, Rapaka RS (1990) The molecular basis of cannabinoid activity. Life Sci 47: 2173–2184

    Article  PubMed  CAS  Google Scholar 

  17. 17

    Durdagi S, Kapou A, Kourouli T, Andreou T, Nikas SP, Nahmias VR, Papahatjis DP, Papadopoulos MG, Mavromoustakos T (2007) The application of 3D-QSAR studies for novel cannabinoid ligands substituted at the C1′ position of the alkyl side chain on the structural requirements for binding to cannabinoid receptors CB1 and CB2. J Med Chem 50: 2875–2885

    Article  PubMed  CAS  Google Scholar 

  18. 18

    Durdagi S, Papadopoulos MG, Papahatjis DP, Mavromoustakos T (2007) Combined 3D QSAR and molecular docking studies to reveal novel cannabinoid ligands with optimum binding activity. Bioorg Med Chem Lett 17: 6754–6763

    Article  PubMed  CAS  Google Scholar 

  19. 19

    Xie XQ, Pavlopoulos S, DiMeglio CM, Makriyannis A (1998) Conformational studies on a diastereoisomeric pair of tricyclic nonclassical cannabinoids by NMR spectroscopy and computer molecular modeling. J Med Chem 41: 167–174

    Article  PubMed  CAS  Google Scholar 

  20. 20

    Xie XQ, Yang DP, Melvin LS, Makriyannis A (1994) Conformational analysis of the prototype nonclassical cannabinoid CP-47,497, using 2D NMR and computer molecular modeling. J Med Chem 37: 1418–1426

    Article  PubMed  CAS  Google Scholar 

  21. 21

    Xie XQ, Melvin LS, Makriyannis A (1996) The conformational properties of the highly selective cannabinoid receptor ligand CP-55,940. J Biol Chem 71: 169–189

    Google Scholar 

  22. 22

    Reggio PH (2003) Pharmacophores for ligand recognition and activation/inactivation of the cannabinoid receptors. Curr Pharm Des 99: 1607–1633

    Article  Google Scholar 

  23. 23

    Song ZH, Slowey CA, Hurst DP, Reggio PH (1999) The difference between the CB1 and CB2 cannabinoid receptors at position 5.46. Is crucial for the selectivity of WIN55212-2 for CB2. Mol Pharmacol 56: 834–840

    PubMed  CAS  Google Scholar 

  24. 24

    Makriyannis A (1995) The role of cell membranes in cannabinoid activity. In: Pertwee R (eds) Cannabinoid receptors. Academic Press Limited, London, pp 87–115

    Google Scholar 

  25. 25

    Mavromoustakos T, Zervou M, Zoumpoulakis P, Kyrikou I, Benetis NP, Polevaya L, Roumelioti P, Giatas N, Zoga A, Moutevelis Minakakis P, Kolocouris A, Vlahakos D, Golic Grdadolnik S, Matsoukas J (2004) Conformation and bioactivity. Design and discovery of novel antihypertensive drugs. Curr Top Med Chem 4: 385–401

    Article  PubMed  CAS  Google Scholar 

  26. 26

    Mavromoustakos T, Papahatjis D, Laggner P (2001) Differential membrane fluidization by active and inactive cannabinoid analogues. Biochim Biophys Acta 1512: 183–190

    Article  PubMed  CAS  Google Scholar 

  27. 27

    Mavromoustakos T, Daliani I (1999) Effects of cannabinoids in membrane bilayers containing cholesterol. Biochim Biophys Acta 1420: 252–265

    Article  PubMed  CAS  Google Scholar 

  28. 28

    Mavromoustakos T, Yang DP, Makriyannis A (1995) Small angle X-ray diffraction and differential scanning calorimetric studies on O-methyl-(-)-Δ8-tetrahydrocannabinol and its 5′ iodinated derivative in membrane bilayers. Biochim Biophys Acta 1237: 183–188

    Article  PubMed  Google Scholar 

  29. 29

    Yang DP, Mavromoustakos T, Beshah K, Makriyannis A (1992) Amphipathic interactions of cannabinoids with membranes. A comparison between Δ8-THC and its O-methyl analog using differential scanning calorimetry, X-ray diffraction and solid state deuterium NMR experiments. Biochim Biophys Acta 1103: 25–36

    Article  PubMed  CAS  Google Scholar 

  30. 30

    Van der Schyf CJ, Mavromoustakos T, Makriyannis A (1988) The conformation of (-)8α and (-)8β-hydroxy-δ 9-tetrahydrocannabinols and their interactions with model membranes. Life Sci 42: 2231–2239

    Article  PubMed  Google Scholar 

  31. 31

    Mavromoustakos T, Yang DP, Broderick W, Fournier D, Herbette LG, Makriyannis A (1991) Small angle X-ray diffraction studies on the topography of cannabinoids in synaptic plasma membranes. Pharmacol Biochem Behav 40: 547–552

    Article  PubMed  CAS  Google Scholar 

  32. 32

    Yang DP, Mavromoustakos T, Makriyannis A (1993) Small angle X-Ray diffraction studies of Δ8-tetrahydrocannabinol and its O-methyl analog in membranes. Life Sci 53: 117–122

    Article  Google Scholar 

  33. 33

    Martel P, Makriyannis A, Mavromoustakos T, Kelly K, Jeffrey KR (1993) Topography of tetrahydrocannabinol in model membranes using neutron diffraction. Biochim Biophys Acta 1151: 51–58

    Article  PubMed  CAS  Google Scholar 

  34. 34

    Mavromoustakos T, Theodoropoulou E, Papahatjis D, Kourouli T, Yang DP, Trumbore M, Makriyannis A (1996) Studies on the thermotropic effects of cannabinoids on phosphatidylcholine bilayers using differential scanning calorimetry and small angle X-ray diffraction. Biophys Acta 1281: 235–244

    Article  Google Scholar 

  35. 35

    Durdagi S, Reis H, Papadopoulos MG, Mavromoustakos T (2008) Comparative molecular dynamics simulations of the potent synthetic classical cannabinoid ligand AMG3 in solution and at binding site of the CB1 and CB2 receptors. Bioorg Med Chem 16: 7377–7387

    Article  PubMed  CAS  Google Scholar 

  36. 36

    Yuzlenko O, Kiec-Kononowicz K (2009) Molecular modeling of A1 and A2A adenosine receptors: comparison of rhodopsin and beta2-adrenergic-based homology models through the docking studies. J Comput Chem 30: 14–32

    Article  PubMed  CAS  Google Scholar 

  37. 37

    Hanson MA, Cherezov V, Griffith MT, Roth CB, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16: 897–905

    Article  PubMed  CAS  Google Scholar 

  38. 38

    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus MM (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4: 187–217

    Article  CAS  Google Scholar 

  39. 39

    Leach AR (2001) Molecular modeling: principles and applications. Pearson Educ. Ltd., England, pp 465–467

    Google Scholar 

  40. 40

    Powell MJD (1977) Restart procedures for the conjugate gradient method. Math Prog 12: 241–254

    Article  Google Scholar 

  41. 41

    Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36: 3219–3228

    Article  CAS  Google Scholar 

  42. 42

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE Jr, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick, DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98 revision A.9. Gaussian Inc., Pittsburgh

  43. 43

    Schuettelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Cryst D60: 1355–1363

    CAS  Google Scholar 

  44. 44

    Lindhal E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7: 306–317

    Google Scholar 

  45. 45

    Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: 3684–3690

    Article  CAS  Google Scholar 

  46. 46

    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103: 8577–8592

    Article  CAS  Google Scholar 

  47. 47

    Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18: 1463–1472

    Article  CAS  Google Scholar 

  48. 48

    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33–38

    Article  PubMed  CAS  Google Scholar 

  49. 49

    Originlab Corporation, Northampton, MA 01060, USA. http://www.originlab.com

  50. 50

    Patra M, Karttunen M, Hyvönen M, Falck E, Vattulainen P (2004) Lipid bilayers driven to a wrong lane in molecular dynamics simulations by subtle changes in long-range electrostatic interactions. J Phys Chem B 108: 4485–4494

    Article  CAS  Google Scholar 

  51. 51

    Patra M, Karttunen M, Hyvonen M, Falck E, Lindqvist P, Vattulainen I (2003) Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J 84: 3636–3645

    Article  PubMed  CAS  Google Scholar 

  52. 52

    van Gunsteren WF, Billeter SR, Eising AA, Hunenberger PH, Kruger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag AG an der ETH, Zurich

  53. 53

    Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52: 7182–7190

    Article  CAS  Google Scholar 

  54. 54

    Kandt C, Ash WL, Tieleman DP (2007) Setting up and running molecular dynamics simulations of membrane proteins. Methods 41: 475–488

    Article  PubMed  CAS  Google Scholar 

  55. 55

    Li J, Edwars PC, Burghammer M, Villa C, Schertler GF (2004) Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol 343: 1409–1438

    Article  PubMed  CAS  Google Scholar 

  56. 56

    Böhm HJJ (1994) On the use of LUDI to search the fine chemicals directory for ligands of proteins of known three-dimensional structure. Comput Aided Mol Des 10: 427–440

    Google Scholar 

  57. 57

    SYBYL v. 6.8. (2001) Molecular modeling software package. Tripos Inc., St. Louis

  58. 58

    Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98: 5648–5662

    Article  CAS  Google Scholar 

  59. 59

    Hehre WJ, Ditchfield R, Pople JA (1975) Self-consistent molecular orbital methods. XV. Extended Gaussian-type basis sets for lithium, beryllium, and boron. J Chem Phys 62: 2921–2923

    Article  Google Scholar 

  60. 60

    Soteriadou K, Tzinia AK, Panou-Pamonis E, Tsikaris V, Sakarellos-Daitsiotis M, Sakarellos C, Papapouluo Y, Matsas R (1996) Antigenicity and conformational analysis of the Zn 2+ binding sites of two Zn 2+ metalloproteases: Leishmania gp63 and mammalian endopeptidase-24.11. Biochem J 313: 455–466

    PubMed  CAS  Google Scholar 

  61. 61

    Stewart JJP (1989) Optimization of parameters for semiempirical methods I. Method. J Comput Chem 10: 209–220

    Article  CAS  Google Scholar 

  62. 62

    Durdagi S, Hofer TS, Randolf BR, Rode BM (2005) Structural and dynamical properties of Bi 3+ in water. Chem Phys Lett 406: 20–23

    Article  CAS  Google Scholar 

  63. 63

    van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26: 1701–1718

    Article  CAS  Google Scholar 

  64. 64

    Salo OMH, Lahtela-Kakkonen M, Gynther J, Jarvinen T, Poso A (2004) Development of a 3D model for the human cannabinoid CB1 receptor. J Med Chem 47: 3048–3057

    Article  PubMed  CAS  Google Scholar 

  65. 65

    Shim JY, Welsh WJ, Howlett AC (2003) Homology model of the CB1 cannabinoid receptor: sites critical for nonclassical cannabinoid agonist interaction. Biopolymers (Pept Sci) 71: 169–189

    Article  CAS  Google Scholar 

  66. 66

    Tuccinardi T, Ferrarini PL, Manera C, Ortore G, Saccomanni G, Martinelli A (2006) Cannabinoid CB2/CB1 selectivity. Receptor modeling and automated docking analysis. J Med Chem 49: 984–994

    Article  PubMed  CAS  Google Scholar 

  67. 67

    Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289: 739–745

    Article  PubMed  CAS  Google Scholar 

  68. 68

    Tao Q, McAllister SD, Andreassi J, Nowell KW, Cabral GA, Hurst DP, Bachtel K, Ekman MC, Reggio PH, Abood ME (1999) Role of a conserved lysine residue in the peripheral cannabinoid receptor (CB2): evidence for subtype specificity. Mol Pharmacol 55: 605–613

    PubMed  CAS  Google Scholar 

  69. 69

    Mahmoudian M (1997) The cannabinoid receptor: computer-aided molecular modeling and docking of ligand. J Mol Graph Model 15: 149–153

    Article  PubMed  CAS  Google Scholar 

  70. 70

    Shim JY, Howlett AC (2006) WIN55212-2 Docking to the CB1 cannabinoid receptor and multiple pathways for conformational induction. J Chem Inf Model 46: 1286–1300

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Serdar Durdagi or Thomas Mavromoustakos.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 2.75 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Durdagi, S., Papadopoulos, M.G., Zoumpoulakis, P.G. et al. A computational study on cannabinoid receptors and potent bioactive cannabinoid ligands: homology modeling, docking, de novo drug design and molecular dynamics analysis. Mol Divers 14, 257–276 (2010). https://doi.org/10.1007/s11030-009-9166-4

Download citation

Keywords

  • Cannabinoids
  • AMG3
  • Conformational analysis
  • 3D QSAR
  • Homology modeling
  • CB1 and CB2 receptors