Skip to main content
Log in

A convenient one-pot synthesis of 3-amino-2, 5-dihydropyridazine and pyrimidine derivatives in the presence of high surface area MgO as a highly effective heterogeneous base catalyst

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A new and efficient method for the preparation of 3-amino-2,5-dihydropyridazines from three-component reactions of (phenyl-hydrazono)-propan-2-one, aldehydes, and malononitrile or ethyl cyanoacetate in the presence of magnesium oxide (MgO) as a highly effective heterogeneous base catalyst is presented. Also, the three-component reactions of aldehydes, amidine systems, and malononitrile or ethyl cyanoacetate for the formation of 4-amino-5-pyrimidine carbonitrile and pyrimidinone derivatives, respectively, are investigated. The salient features of these methods include high conversions, short reaction times, cleaner reaction profiles, and the use of inexpensive and readily available catalyst.

Graphical Abstract

A convenient one-pot synthesis of 3-amino-2, 5-dihydropyridazine and pyrimidine derivatives in the presence of high surface area MgO as a highly effective heterogeneous base catalyst

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tamayo N, Liao L, Goldberg M, Powers D, Tudor Y-Y, Yu V, Wong LM, Henkle B, Middleton S, Syed R, Harvey T, Jang G, Hungate R, Dominguez C (2005) Design and synthesis of potent pyridazine inhibitors of p38 MAP kinase. Bioorg Med Chem Lett 15: 2409–2413

    Article  CAS  PubMed  Google Scholar 

  2. Nagawade RR, Khanna VV, Bhagwat SS, Shinde DB (2005) Synthesis of new series of 1- aryl-1,4-dihydro-4-oxo-6-methylpyridazine-3-carboxylic acid as potential antibacterial agents. Eur J Med Chem 40: 1325–1330

    Article  CAS  PubMed  Google Scholar 

  3. Sotelo E, Ravina E (2002) Pyridazine derivatives. XXIV.[1] efficient N-methylation of diversely substituted 3(2H)-pyridazinones using N,N-dimethylformamide dimethylacetal. Synth Commun 32: 1675–1680

    Article  CAS  Google Scholar 

  4. Coelho A, Sotelo E, Novoa H, Peeters OM, Blaton N, Ravina E (2004) Pyridazine derivatives. Part 38: efficient Heck alkenylation at position 5 of the 6-phenyl-3(2H)-pyridazinone system. Tetrahedron 45: 3459–3463

    Article  CAS  Google Scholar 

  5. Rohet F, Rubat C, Coudert P, Couquelet (1997) Synthesis and analgesic effects of 3-substituted 4,6-diarylpyridazine derivatives of the arylpiperazine class. J Bioorg Med Chem 5: 655–659

    Article  CAS  Google Scholar 

  6. Tucker JA, Allwine DA, Grega KC, Barbachyn MR, Klock JL, Adamski JL, Brickner SJ, Hutchinson DK, Ford CW, Zurenko GE, Conradi RA, Burton PS, Jensen RM (1998) Piperazinyl oxazolidinone antibacterial agents containing a pyridine, diazene, or triazene teteroaromatic ring. J Med Chem 41: 3727–3735

    Article  CAS  PubMed  Google Scholar 

  7. Benson SC, Palabrica CA, Snyder JK (1987) Indole as a dienophile in inverse electron demand Diels-Alder reactions. 5H-Pyridazino [4,5-b]indoles as cycloadducts with 3,6-dicarbomethoxy-1,2,4,5-tetrazine. J Org Chem 52: 4610–4614

    Article  CAS  Google Scholar 

  8. Gyoten M, Nagaya H, Fukuda S, Ashida Y, Kawano Y (2003) Synthesis of eosinophil infiltration inhibitors with antihistaminic activity. Chem Pharm Bull 51: 122–133

    Article  CAS  PubMed  Google Scholar 

  9. Sung ND, Yung KS, Kim TY, Choi KY, Such M, Kim JG, Suh IH, Chin J (2001) Synthesis and characterization of a novel tetranuclear nickel(II) complex: [Ni4(μ-OH)2(μ-dppn)4(μ−H2O)2](Cl)(ClO4)5 · 9H2 O (dppn=3,6-bis(2-pyridyl)pyridazine). Inorg Chem Commun 4: 377–380

    Article  CAS  Google Scholar 

  10. Brooker S, Davidson TC, Hay SJ, Kelly RJ, Kennepohl DK, Plieger PG, Moubaraki B, Murray KS, Bill E, Bothe E (2001) Doubly pyridazine-bridged macrocyclic complexes of copper in + 1, + 2 and mixed valent oxidation states. Coord Chem Rev 3: 216–217

    Google Scholar 

  11. Cheng Y, Ma B, Wudl F (1999) Synthesis and optical properties of a series of pyrrolopyridazine derivatives: deep blue organic luminophors for electroluminescent devices. J Mater Chem 9: 2183–2188

    Article  CAS  Google Scholar 

  12. Sheibani H, Saljoogi AS, Bazgir A (2008) Three-component process for the synthesis of 4-amino-5- pyrimidinecarbonitriles under thermal aqueous conditions or microwave irradiation. Arkivoc ii: 115–123

    Google Scholar 

  13. George L, Veedu RN, Sheibani H, Taherpour AA, Flammang R, Wentrup C (2007) Carboxyketenes from 4-hydroxy-1,3-oxazin-6-ones and meldrum’s acid derivatives. J Org Chem 72: 1399–1404

    Article  CAS  PubMed  Google Scholar 

  14. Sheibani H, Mosslemin MH, Behzadi S, Islami MR, Saidi K (2006) A convenient one-pot synthesis of pyrano[3,2−c]quinolin-2,5(6H)-dione and 2H, 5H-pyrano[3,2−c]chromene-2,5-dione derivatives. Synthesis 3: 435–438

    Article  Google Scholar 

  15. Sheibani H, Bernhardt PV, Wentrup C (2005) Mesoionic 1,3-oxazinium olates: rearrangement to acylketenes and 3-azabicyclo[3.1.1]heptanetriones. J Org Chem 70: 5859–5861

    Article  CAS  PubMed  Google Scholar 

  16. Ghozlan SAS, Abdelhamid IA, Elnagdi MH (2006) Functionally substituted arylhydrazones as building blocks in heterocyclic synthesis: routes to pyridazines and pyridazinoquinazolines. Arkivoc xiii: 147–157

    Google Scholar 

  17. Abdelhamid IA, Darwish ES, Nasrs MA, Abdel-Gallil FM, Fleita DH (2008) Aryhydrazonals as aldehyde comonents in Baylis–Hillman reaction:synthesis of 5-hydroxy-2,3,4,5-tetrahydropyridazine-4-carbonitrile and 6,7,8,8a-tetrahydrocinnolin-5(1H)-one. Arkivoc xvii: 117–121

    Google Scholar 

  18. Al-Zaydi KM, Borik RM, Elnagdi MH (2003) Arylhydrazonopropanals as building blocks in heterocyclic chemistry: microwave assisted condensation of 2-arylhydrazonopropanals with amines and active methylene reagents. Molecules 8: 910–923

    Article  CAS  Google Scholar 

  19. Elassar AA, Dib HH, Al-Awadi NA, Elnagdi MH (2007) Chemistry of carbofunctionally substituted hydrazones. Arkivoc ii: 272–315

    Google Scholar 

  20. Xu C, Bartley JK, Enache DI, Knight DW, Hutchings GJ (2005) High surface area MgO as a highly effective heterogeneous base catalyst for michael addition and Knoevenagel condensation reactions. Synthesis 10: 3468–3476

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Sheibani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheibani, H., Amrollahi, M.A. & Esfandiarpoor, Z. A convenient one-pot synthesis of 3-amino-2, 5-dihydropyridazine and pyrimidine derivatives in the presence of high surface area MgO as a highly effective heterogeneous base catalyst. Mol Divers 14, 277–283 (2010). https://doi.org/10.1007/s11030-009-9165-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-009-9165-5

Keywords

Navigation