Skip to main content
Log in

QSAR-modeling of toxicity of organometallic compounds by means of the balance of correlations for InChI-based optimal descriptors

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Quantitative structure–activity relationships (QSAR) for toxicity toward rats (pLD50) have been built by means of optimal descriptors. Comparison of the optimal descriptors calculated using the International Chemical Identifier (InChI) with the optimal descriptors calculated using the simplified molecular input line entry system (SMILES) has shown that the InChI-based models give more accurate prediction for the abovementioned toxicity of organometallic compounds. These models were obtained by means of the balance of correlation: one subset of the training set (subtraining set) plays role of the training; the second subset (calibration set) plays role of the preliminary check of the models. It has been shown that the balance of correlations is a more robust predictor for the toxicity than the classic scheme (training set—test set: without the calibration set). Three splits into the subtraining set, calibration set, and test set were examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

QSPR:

Quantitative structure–property relationships

QSAR:

Quantitative structure–activity relationships

SMILES:

Simplified molecular input line entry system

InChI:

International Chemical Identifier

DCW:

Descriptor of the correlation weights

References

  1. Marrero-Ponce Y, Castillo-Garit JA, Castro EA, Torrens F, Rotondo R (2008) 3D-chiral (2.5) atom-based TOMOCOMD-CARDD descriptors: theory and QSAR applications to central chirality codification. J Math Chem 44: 755–786. doi:10.1007/s10910-008-9386-3

    Article  CAS  Google Scholar 

  2. Duchowicz PR, Talevi A, Bruno-Blanch LE, Castro EA (2008) New QSPR study for the prediction of aqueous solubility of drug-like compounds. Bioorg Med Chem 16: 7944–7955. doi:10.1016/j.bmc.2008.07.067

    Article  CAS  PubMed  Google Scholar 

  3. Ray S, Sengupta C, Roy K (2008) QSAR modeling for lipid peroxidation inhibition potential of flavonoids using topological and structural parameters. Cent Eur J Chem 6: 267–276. doi:10.2478/s11532-008-0014-7

    Article  CAS  Google Scholar 

  4. Roy K, Roy PP (2008) Comparative QSAR studies of CYP1A2 inhibitor flavonoids using 2D and 3D descriptors. Chem Biol Drug Des 72: 370–382. doi:10.1111/j.1747-0285.2008.00717.x

    Article  CAS  PubMed  Google Scholar 

  5. Toropov AA, Toropova AP, Gutman I (2005) Comparison of QSPR models based on hydrogen-filled graphs and on graphs of atomic orbitals. Croat Chem Acta 78: 503–509

    CAS  Google Scholar 

  6. Toropov AA, Toropova AP, Mukhamedzhanova DV, Gutman I (2005) Simplified molecular input line entry system (SMILES) as an alternative for constructing quantitative structure-property relationships (QSPR). Indian J Chem - Sec A 44: 1545–1552

    Google Scholar 

  7. Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Markopoulos J, Igglessi-Markopoulou O (2006) A novel QSAR model for evaluating and predicting the inhibition activity of dipeptidyl aspartyl fluoromethylketones. QSAR Comb Sci 25: 928–935. doi:10.1002/qsar.200530208

    Article  CAS  Google Scholar 

  8. Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Markopoulos J, Igglessi-Markopoulou O (2006) Prediction of intrinsic viscosity in polymer-solvent combinations using a QSPR model. Polymer (Guildf) 47: 3240–3248. doi:10.1016/j.polymer.2006.02.060

    Article  CAS  Google Scholar 

  9. Puzyn T, Mostrag A, Suzuki N, Falandysz J (2008) QSPR-based estimation of the atmospheric persistence for chloronaphthalene congeners. Atmos Environ 42: 6627–6636. doi:10.1016/j.atmosenv.2008.04.048

    Article  CAS  Google Scholar 

  10. Puzyn T, Suzuki N, Haranczyk M, Rak J (2008) Calculation of quantum-mechanical descriptors for QSPR at the DFT level: is it necessary. J Chem Inf Model 48: 1174–1180. doi:10.1021/ci800021p

    Article  CAS  PubMed  Google Scholar 

  11. Duchowicz PR, Vitale MG, Castro EA (2008) Partial order ranking for the aqueous toxicity of aromatic mixtures. J Math Chem 44: 541–549. doi:10.1007/s10910-007-9327-6

    Article  CAS  Google Scholar 

  12. Roy K, Ghosh G (2008) QSTR with extended topochemical atom indices. 10. Modeling of toxicity of organic chemicals to humans using different chemometric tools. Chem Biol Drug Des 72: 383–394. doi:10.1111/j.1747-0285.2008.00712.x

    Article  CAS  PubMed  Google Scholar 

  13. Toropov AA, Benfenati E (2008) Additive SMILES-based optimal descriptors in QSAR modelling bee toxicity: Using rare SMILES attributes to define the applicability domain. Bioorg Med Chem 16: 4801–4809. doi:10.1016/j.bmc.2008.03.048

    Article  CAS  PubMed  Google Scholar 

  14. Toropov AA, Rasulev BF, Leszczynski J (2008) QSAR modeling of acute toxicity by balance of correlations. Bioorg Med Chem 16: 5999–6008. doi:10.1016/j.bmc.2008.04.055

    Article  CAS  PubMed  Google Scholar 

  15. Toropov AA, Rasulev BF, Leszczynski J (2007) QSAR modeling of acute toxicity for nitrobenzene derivatives towards rats: comparative analysis by MLRA and optimal descriptors. QSAR Comb Sci 26: 686–693. doi:10.1002/qsar.200610135

    Article  CAS  Google Scholar 

  16. Toropov AA, Benfenati E (2007) Optimisation of correlation weights of SMILES invariants for modelling oral quail toxicity. Eur J Med Chem 42: 606–613. doi:10.1016/j.ejmech.2006.11.018

    Article  CAS  PubMed  Google Scholar 

  17. Norinder U, Liden P, Bostrom H (2006) Discrimination between modes of toxic action of phenols using rule based methods. Mol Divers 10: 207–212. doi:10.1007/s11030-006-9019-3

    Article  CAS  PubMed  Google Scholar 

  18. Melagraki G, Afantitis A, Sarimveis H, Igglessi-Markopoulou O, Alexandridis A (2006) A novel RBF neural network training methodology to predict toxicity to Vibrio fischeri. Mol Divers 10: 213–221. doi:10.1007/s11030-005-9008-y

    Article  CAS  PubMed  Google Scholar 

  19. Isayev O, Rasulev B, Gorb L, Leszczynski J (2006) Structure-toxicity relationships of nitroaromatic compounds. Mol Divers 10: 233–245. doi:10.1007/s11030-005-9002-4

    Article  CAS  PubMed  Google Scholar 

  20. Kuz’min VE, Muratov EN, Artemenko AG, Gorb L, Qasim M, Leszczynski J (2008) The effect of nitroaromatics’ composition on their toxicity in vivo: novel, efficient non-additive 1D QSAR analysis. Chemosphere 72: 1373–1380. doi:10.1016/j.chemosphere.2008.04.045

    Article  PubMed  Google Scholar 

  21. Kuz’min VE, Muratov EN, Artemenko AG, Gorb L, Qasim M, Leszczynski J (2008) The effects of characteristics of substituents on toxicity of the nitroaromatics: HiT QSAR study. J Comput Aided Mol Des 22: 747–759. doi:10.1007/s10822-008-9211-x

    Article  PubMed  Google Scholar 

  22. Fouchécourt M-O, Beéliveau M, Krishnan K (2001) Quantitative structure-pharmacokinetic relationship modeling. Sci Tot Environ 274: 125–135

    Article  Google Scholar 

  23. Gombar VK, Kapoor VK (1990) Quantitative structure-activity relationship studies: β-adrenergic blocking activity of 1-(2,4-disubstituted phenoxy)-3-aminopropan-2-ols. Eur J Med Chem 25: 689–695. doi:10.1016/0223-5234(90)90134-O

    Article  CAS  Google Scholar 

  24. Toropov AA, Toropova AP (2000) QSPR modeling of the stability constants of biometal complexes with phosphate derivatives of adenosine. Russ J Coord Chem 26: 792–797

    CAS  Google Scholar 

  25. Toropov AA, Toropova AP (2000) QSPR modeling of the formation constants for complexes using atomic orbital graphs. Russ J Coord Chem 26: 398–405

    CAS  Google Scholar 

  26. Toropov AA, Toropova AP (2001) Prediction of heteroaromatic amine mutagenicity by means of correlation weighting of atomic orbital graphs of local invariants. J Mol Struct (Theochem) 538: 287–293. doi:10.1016/S0166-1280(00)00713-2

    Article  CAS  Google Scholar 

  27. Toropov AA, Toropova AP (2002) QSAR modeling of toxicity on optimization of correlation weights of Morgan extended connectivity. J Mol Struct (Theochem) 578: 129–134. doi:10.1016/S0166-1280(01)00695-9

    Article  CAS  Google Scholar 

  28. Toropov A, Toropova A (2004) Nearest neighboring code and hydrogen bond index in labeled hydrogen-filled graph and graph of atomic orbitals: application to model of normal boiling points of haloalkanes. J Mol Struct (Theochem) 711: 173–183. doi:10.1016/j.theochem.2004.10.003

    Article  CAS  Google Scholar 

  29. Gutman I, Furtula B, Toropov AA, Toropova AP (2005) The graph of atomic orbitals and its basic properties. 2. Zagreb indices. Match 53: 225–230

    CAS  Google Scholar 

  30. Gutman I, Toropov AA, Toropova AP (2005) The graph of atomic orbitals and its basic properties. 1. Wiener index. Match 53: 215–224

    CAS  Google Scholar 

  31. Toropov AA, Toropova AP (2002) Modeling of acyclic carbonyl compounds normal boiling points by correlation weighting of nearest neighboring codes. J Mol Struct (Theochem) 581: 11–15. doi:10.1016/S0166-1280(01)00733-3

    Article  CAS  Google Scholar 

  32. Toropov AA, Benfenati E (2004) QSAR modelling of aldehyde toxicity by means of optimisation of correlation weights of nearest neighbouring codes. J Mol Struct (Theochem) 676: 165–169. doi:10.1016/j.theochem.2004.01.023

    Article  CAS  Google Scholar 

  33. Toropov AA, Benfenati E (2004) of aldehyde toxicity against a protozoan, Tetrahymena pyriformis by optimization of correlation weights of nearest neighboring codes. J Mol Struct (Theochem) 679: 225–228. doi:10.1016/j.theochem.2004.04.020

    Article  CAS  Google Scholar 

  34. Toropov A, Toropova A (2004) Nearest neighboring code and hydrogen bond index in labeled hydrogen-filled graph and graph of atomic orbitals: application to model of normal boiling points of haloalkanes. J Mol Struct (Theochem) 711: 173–183. doi:10.1016/j.theochem.2004.10.003

    Article  CAS  Google Scholar 

  35. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28: 31–36. doi:10.1021/ci00057a005

    CAS  Google Scholar 

  36. Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Comput Sci 29: 97–101. doi:10.1021/ci00062a008

    CAS  Google Scholar 

  37. Weininger D (1990) Smiles. 3. Depict. Graphical depiction of chemical structures. J Chem Inf Comput Sci 30: 237–243. doi:10.1021/ci00067a005

    CAS  Google Scholar 

  38. Vidal D, Thormann M, Pons M (2005) LINGO, an efficient holographic text based method to calculate biophysical properties and intermolecular similarities. J Chem Inf Model 45: 386–393. doi:10.1021/ci0496797

    Article  CAS  PubMed  Google Scholar 

  39. Vidal D, Thormann M, Pons M (2006) A novel search engine for virtual screening of very large databases. J Chem Inf Model 46: 836–843. doi:10.1021/ci050458q

    Article  CAS  PubMed  Google Scholar 

  40. Toropov AA, Benfenati E (2007) SMILES in QSPR/QSAR modeling: results and perspectives. Curr Drug Disc Tech 4: 77–116

    Article  CAS  Google Scholar 

  41. Degtyarenko K, Ennis M, Garavelli JS (2007) Good annotation practice for chemical data in biology. In Silico Biol 7: 45–56

    Google Scholar 

  42. Prasanna MD, Vondrasek J, Wlodawer A, Bhat TN (2005) Application of InChI to curate, index, and query 3-D structures. Proteins 60: 1–4. doi:10.1002/prot.20469

    Article  CAS  PubMed  Google Scholar 

  43. Coles SJ, Day NE, Murray-Rust P, Rzepa HS, Zhang Y (2005) Enhancement of the chemical semantic web through the use of InChI identifiers. Org Biomol Chem 3: 1832–1834. doi:10.1039/b502828k

    Article  CAS  PubMed  Google Scholar 

  44. Bertinetto C, Duce C, Micheli A, Solaro R, Starita A, Tiné MR (2007) Prediction of the glass transition temperature of (meth)acrylic polymers containing phenyl groups by recursive neural network. Polymer (Guildf) 48: 7121–7129. doi:10.1016/j.polymer.2007.09.043

    Article  CAS  Google Scholar 

  45. U.S. Library of Medicine (2008). http://toxnet.nlm.nih.gov/

  46. ACD/ChemSketch Freeware (2008) version 11.00, Advanced Chemistry Development, Inc., Toronto, ON, Canada. www.acdlabs.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Toropov.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 1664 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toropov, A.A., Toropova, A.P. & Benfenati, E. QSAR-modeling of toxicity of organometallic compounds by means of the balance of correlations for InChI-based optimal descriptors. Mol Divers 14, 183–192 (2010). https://doi.org/10.1007/s11030-009-9156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-009-9156-6

Keywords

Navigation