Skip to main content
Log in

Selection of peptomeric inhibitors of bovine α-chymotrypsin and cathepsin G based on trypsin inhibitor SFTI-1 using a combinatorial chemistry approach

  • Full Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A peptomeric library consisting of 360 monocyclic analogues of trypsin inhibitor SFTI-1 isolated from sunflower seeds was designed and synthesized by a solid-phase approach in order to select chymotrypsin and cathepsin G inhibitors. All peptomers contained a proteinogenic-Phe-mimicking N-benzylglycine (Nphe) at positions 5 and 12. Into the synthesized library, different peptoid monomers were introduced in the 7–10 segment. Deconvolution of the library against both proteinases through an iterative method in solution revealed that the strongest chymotrypsin inhibitory activity was displayed by two analogues, [Nphe5,12]SFTI-1 (1) and [Nphe5,12, Naem8]SFTI-1 (2), where Naem stands for N-(2-morpholinoethyl)glycine. After deconvolution against a cathepsin G analogue, [Nphe5,12, Npip8,9, Nnle10] SFTI-1 (3) (Npip = N-(3,4-methylenedioxybenzyl)glycine) appeared to be the most potent inhibitor with a high serum stability. It is worth noting that the analogues obtained by a combinatorial approach display high specificity towards one of the experimental enzymes. Another interesting feature is the lack of Pro8 in analogues 2 and 3, the amino acid residue absolutely conserved in the family of Bownan–Birk inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luckett S, Santiago Garcia R, Barker JJ et al (1999) High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. J Mol Biol 290: 525–533. doi:10.1006/jmbi.1999.2891

    Article  CAS  PubMed  Google Scholar 

  2. Zabłotna E, Kaźmierczak K, Jaśkiewicz A et al (2002) Chemical synthesis and kinetic study of the smallest naturally occurring trypsin inhibitor SFTI-1 isolated from sunflower seeds and its analogues. Biochem Biophys Res Commun 292: 855–859. doi:10.1006/bbrc.2002.6746

    Article  PubMed  Google Scholar 

  3. Adessi C, Soto C (2002) Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem 9: 963–978. doi:10.2174/0929867024606731

    Article  CAS  PubMed  Google Scholar 

  4. Hamy F, Felder ER, Heizmann G et al (1997) An inhibitor of the Tat/TAR RNA interaction that effectively suppresses HIV-1 replication. Proc Natl Acad Sci USA 94: 3548–3553. doi:10.1073/pnas.94.8.3548

    Article  CAS  PubMed  Google Scholar 

  5. Ostergaard S, Holm A (1997) Peptomers: a versatile approach for the preparation of diverse combinatorial peptidomimetic bead libraries. Mol Divers 3: 17–27. doi:10.1023/A:1009698507588

    Article  CAS  PubMed  Google Scholar 

  6. Stawikowski M, Stawikowska R, Jaśkiewicz A et al (2005) Examples of peptide-peptoid hybrid serine protease inhibitors based on the trypsin inhibitor SFTI-1 with complete protease resistance at \({{P}_{1}-{P}_{1}^{\prime}}\) reactive site. ChemBioChem 6: 1057–1061. doi:10.1002/cbic.200400412

    Article  CAS  PubMed  Google Scholar 

  7. Costa JR, Yaliraki SN (2006) Role of rigidity on the activity of proteinase inhibitors and their peptide mimics. J Phys Chem B 110: 18981–18988. doi:10.1021/jp0575299

    Article  CAS  PubMed  Google Scholar 

  8. Zuckermann RN, Kerr JM, Kent SBH et al (1992) Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid phase synthesis. J Am Chem Soc 114: 10646–10647. doi:10.1021/ja00052a076

    Article  CAS  Google Scholar 

  9. Caughey GH (1994) Serine proteinases of mast cell and leukocyte granules. A league of their own. Am J Respir Crit Care Med 150: 138–142

    Google Scholar 

  10. Sambrano GR, Huang W, Faruqi T et al (2000) Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem 275: 6819–6823. doi:10.1074/jbc.275.10.6819

    Article  CAS  PubMed  Google Scholar 

  11. Turkington PT (1992) Cathepsin G, a regulator of human vitamin K, dependent clotting factors and inhibitors. Thromb Res 67: 147–155. doi:10.1016/0049-3848(92)90134-V

    Article  CAS  PubMed  Google Scholar 

  12. Owen CA, Campbell EJ (1998) Angiotensin II generation at the cell surface of activated neutrophils: novel cathepsin G-mediated catalytic activity that is resistant to inhibition. J Immunol 160: 1436–1443

    CAS  PubMed  Google Scholar 

  13. Shafer WM, Hubalek F, Huang M et al (1996) Bactericidal activity of a synthetic peptide (CG 117-136) of human lysosomal cathepsin G is dependent on arginine content. Infect Immun 64: 4842–4845

    CAS  PubMed  Google Scholar 

  14. Newman SL, Gootee L, Gabay JE et al (2000) Identification of constituents of human neutrophil azurophil granules that mediate fungistasis against Histoplasma capsulatum. Infect Immun 68: 5668–5668. doi:10.1128/IAI.68.10.5668-5672.2000

    Article  CAS  PubMed  Google Scholar 

  15. Sole NA, Barany GJ (1992) Optimization of solid-phase synthesis of [Ala8]-dynorphin. J Org Chem 57: 5399–5403. doi:10.1021/jo00046a022

    Article  CAS  Google Scholar 

  16. Yang Y, Sweeney WV, Schneider K et al (1994) Two-step selective formation of three disulfide bridges in the synthesis of the C-terminal epidermal growth factor-like domain in human blood coagulation factor IX. Protein Sci 3: 1267–1275. doi:10.1002/pro.5560030813

    Article  CAS  PubMed  Google Scholar 

  17. Empie MW, Laskowski M Jr (1982) Thermodynamics and kinetics of single residue replacements in avian ovomucoid third domains: effect on inhibitor interactions with serine proteinases. Biochemistry 21: 2274–2284. doi:10.1021/bi00539a002

    Article  CAS  PubMed  Google Scholar 

  18. Park SJ (1985) Effect of amino acid replacement in ovomucoid third domains upon their association with serine proteinases. Ph.D. Thesis, Purdue University, West Lafayette, USA

  19. Wysocka M, Łęgowska A, Bulak E et al (2007) New chromogenic substrates of human neutrophil cathepsin G containing non-natural aromatic amino acid residues in position P(1) selected by combinatorial chemistry methods. Mol Divers 11: 93–99. doi:10.1007/s11030-007-9063-7

    Article  CAS  PubMed  Google Scholar 

  20. Leatherbarrow RJ (2001) GraFit Version 5. Erithacus software, Horley

  21. Wysocka M, Lesner A, Guzow K et al (2008) Design of selective substrates of proteinase 3 using combinatorial chemistry methods. Anal Biochem 378: 208–215. doi:10.1016/j.ab.2008.04.003

    Article  CAS  PubMed  Google Scholar 

  22. Wysocka M, Kwiatkowska B, Rzadkiewicz M et al (2007) Selection of new chromogenic substrates of serine proteinases using combinatorial chemistry methods. Comb Chem High Throughput Screen 10: 171–180. doi:10.2174/138620707780126714

    Article  CAS  PubMed  Google Scholar 

  23. Gariani T, McBride JD, Leatherbarrow R (1999) The role of P2’ position of Bowman–Birk proteinase inhibitor in the inhibition of trypsin. Studies on P2’ variation on cyclic peptides encompassing the reactive site loop. Biochim Biophys Acta 1431: 232–237

    CAS  PubMed  Google Scholar 

  24. Jaśkiewicz A, Lesner A, Różycki J et al (1997) Distance between the basic group the amino acid side chain in position P 1 of trypsin inhibitor CMTI-III and Asp189 in the substrate pocket of trypsin has an essential influence on the inhibitory activity. Biochem Biophys Res Commun 240: 869–871. doi:10.1006/bbrc.1997.7752

    Article  PubMed  Google Scholar 

  25. Zabłotna E, Jaśkiewicz A, Łęgowska A et al (2007) Designing of proteinase inhibitors by combinatorial chemistry using trypsin inhibitor SFTI-1 as a starting structure. J Pept Sci 13: 749–755. doi:10.1002/psc.887

    Article  PubMed  Google Scholar 

  26. Daly NL, Chen YK, Foley FM et al (2006) The absolute structural requirement for a proline in the P3′-position of Bowman–Birk protease inhibitors is surmounted in the minimized SFTI-1 scaffold. Biol Chem 281: 23668–23675. doi:10.1074/jbc.M601426200

    Article  CAS  Google Scholar 

  27. McBride JD, Watson EM, Brauer AB et al (2002) Peptide mimics of the Bowman-Birk inhibitor reactive site loop. Biopolymers 66: 79–92. doi:10.1002/bip.10228

    Article  CAS  PubMed  Google Scholar 

  28. Korsinczky MLJ, Schirra HJ, Craik DJ (2004) Sunflower trypsin inhibitor-1. Curr Protein Pept Sci 5: 351–364. doi:10.2174/1389203043379594

    Article  CAS  PubMed  Google Scholar 

  29. Brauer AB, Domingo GJ, Cooke RM et al (2002) A conserved cis peptide bond is necessary for the activity of Bowman–Birk inhibitor protein. Biochemistry 41: 10608–10615. doi:10.1021/bi026050t

    Article  CAS  PubMed  Google Scholar 

  30. Lu W, Apostol I, Qasim MA et al (1997) Binding of amino acid side-chains to S1 cavities of serine proteinases. J Mol Biol 266: 441–461. doi:10.1006/jmbi.1996.0781

    Article  CAS  PubMed  Google Scholar 

  31. Krowarsch D, Dadlez M, Buczek O et al (1999) Interscaffolding additivity: binding of P1 variants of bovine pancreatic trypsin inhibitor to four serine proteases. J Mol Biol 289: 175–186. doi:10.1006/jmbi.1999.2757

    Article  CAS  PubMed  Google Scholar 

  32. Zabłotna E, Kaźmierczak K, Jaśkiewicz A et al (2002) Inhibition of bovine α-chymotrypsin by cyclic trypsin inhibitor SFTI-1 isolated from sunflower seeds and its two acyclic analogues. LIPS 9: 131–134

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Łęgowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łęgowska, A., Dębowski, D., Lesner, A. et al. Selection of peptomeric inhibitors of bovine α-chymotrypsin and cathepsin G based on trypsin inhibitor SFTI-1 using a combinatorial chemistry approach. Mol Divers 14, 51–58 (2010). https://doi.org/10.1007/s11030-009-9142-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-009-9142-z

Keywords

Navigation