Skip to main content
Log in

Emerging molecular diversity from the intra-molecular Ugi reaction: iterative efficiency in medicinal chemistry

  • Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

This review details a now established area within the isonitrile multi-component reaction (IMCR) field of study, namely employing bi-functional reagents in the Ugi reaction for the construction of screening sets with the additional element or even possibly ‘metric’ of enhanced ‘iterative efficiency potential’ The concept of ‘iterative efficiency’ will be briefly introduced, coupled with discussion on new synthetic routes to select bi-functional IMCR precursors and their use in the generation of pharmacologically relevant ‘molecular diversity’

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Viswanadhan VN, Balan C, Hulme C, Cheetham JC, Sun Y (2002) Knowledge-based approaches in the design and selection of compound libraries for drug discovery. Curr Opin Drug Discov Dev 5: 400–406

    CAS  Google Scholar 

  2. Ugi I (1962) The alpha-addition of immonium ions and anions to isonitriles accompanied by secondary reactions. Angew Chem Int Ed Engl 1: 8–21. doi:10.1002/anie.196200081

    Article  Google Scholar 

  3. Domling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106: 17–89. doi:10.1021/cr0505728

    Article  PubMed  CAS  Google Scholar 

  4. Hulme C, Gore V (2003) “Multi-component reactions: emerging chemistry in drug discovery” ‘from xylocain to crixivan’ Curr Med Chem 10: 51–80. doi:10.2174/0929867033368600

    Article  PubMed  CAS  Google Scholar 

  5. Hulme C, Bienayme H, Nixey T, Chenera B, Jones W, Tempest P, Smith AL (2003) Library generation via postcondensation modifications of isocyanide-based multicomponent reactions. Methods Enzymol 369: 469–496. doi:10.1016/S0076-6879(03)69024-5

    Article  PubMed  CAS  Google Scholar 

  6. Hulme C, Nixey T (2003) Rapid assembly of molecular diversity via exploitation of isocyanide-based multi-component reactions. Curr Opin Drug Discov Dev 6: 921–929

    CAS  Google Scholar 

  7. Lebl M (2002) Combinatorial chemistry: the history and the basics. Integrated Drug Discovery Technologies, pp 395-95

  8. Kappe CO, Dallinger D (2006) The impact of microwave synthesis on drug discovery. Nat Rev Drug Discov 5: 51–63. doi:10.1038/nrd1926

    Article  PubMed  CAS  Google Scholar 

  9. Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16: 3–50. doi:10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6

    Article  PubMed  CAS  Google Scholar 

  10. Bienayme H, Hulme C, Oddon G, Schmitt P (2000) Maximizing synthetic efficiency: multi-component transformations lead the way. Eur J Chem 6: 3321–3329. doi:10.1002/1521-3765(20000915)6:18<3321::AID-CHEM3321>3.0.CO;2-A

    Article  CAS  Google Scholar 

  11. Burke MD, Berger EM, Schreiber SL (2003) Generating diverse skeletons of small molecules combinatorially. Science 302: 613–618. doi:10.1126/science.1089946

    Article  PubMed  CAS  Google Scholar 

  12. Ruben AJ, Kiso Y, Freire E (2006) Overcoming roadblocks in lead optimization: a thermodynamic perspective. Chem Biol Drug Des 67: 2–4. doi:10.1111/j.1747-0285.2005.00314.x

    Article  PubMed  CAS  Google Scholar 

  13. Domling A (1998) Isocyanide based multi component reactions in combinatorial chemistry. Comb Chem High Throughput Screen 1: 1–22

    PubMed  CAS  Google Scholar 

  14. Ugi I, Wischhoefer E (1962) Isonitriles. XI. Synthesis of simple penicillanic acid derivatives. Chem Ber 95: 136–140. doi:10.1002/cber.19620950123

    Article  CAS  Google Scholar 

  15. Isenring HP, Hofheinz W (1981) A simple two-step synthesis of diphenylmethyl esters of 2-oxo-1-azetidineacetic acids. Synthesis 385–387 doi:10.1055/s-1981-29461

  16. Kamiya T, Teraji T, Hashimoto M, Nakaguchi O, Oku T (1976) Studies on β-lactam antibiotics. III. Synthesis of 2-methyl-3-cephem derivatives. J Am Chem Soc 98: 2342–2344. doi:10.1021/ja00424a061

    Article  PubMed  CAS  Google Scholar 

  17. Hatanaka M, Nitta H, Ishimaru T (1984) The synthesis of the 1-carbopenem antibiotic (±)-ps-5 and its 6-epi analogue. Tetrahedron Lett 25: 2387–2390. doi:10.1016/S0040-4039(01)80262-8

    Article  CAS  Google Scholar 

  18. Hatanaka M, Yamamoto Y-i, Nitta H, Ishimaru T (1981) A novel synthesis of the carbapen-2-em derivatives. Tetrahedron Lett 22: 3883–3886. doi:10.1016/S0040-4039(01)91335-8

    Article  CAS  Google Scholar 

  19. Kanizsai I, Szakonyi Z, Sillanpää R, Fülöp F (2006) A comparative study of the multicomponent Ugi reactions of an oxabicycloheptene-based β-amino acid in water and in methanol. Tetrahedron Lett 47: 9113–9116. doi:10.1016/j.tetlet.2006.10.069

    Article  CAS  Google Scholar 

  20. Pirrung M, Sarma KD (2004) β-Lactam synthesis by Ugi reaction of β-keto acids in aqueous solution. Synlett 1425–1427 doi:10.1055/s-2004-825606

  21. Mironov MA, Ivantsova MN, Mokrushin VS (2003) Ugi reaction in aqueous solutions: a simple protocol for libraries production. Mol Divers 6: 193–197. doi:10.1023/B:MODI.0000006758.61294.57

    Article  PubMed  CAS  Google Scholar 

  22. Cho S, Keum G, Kang SB, Han SY, Kim Y (2003) An efficient synthesis of 2,5-diketopiperazine derivatives by the Ugi four-center three-component reaction. Mol Divers 6: 283–286. doi:10.1023/B:MODI.0000006812.16141.b5

    Article  PubMed  CAS  Google Scholar 

  23. Demharter A, Hörl W, Herdtweck E, Ugi I (1996) Synthesis of chiral 1,1 prime-iminodicarboxylic acid derivatives from α-amino acids, aldehydes, isocyanides, and alcohols by the diastereoselective five-center-four-component reaction. Angew Chem Int Ed Engl 35: 173–175. doi:10.1002/anie.199601731

    Article  CAS  Google Scholar 

  24. Ugi I, Goebel M, Gruber B, Heilingbrunner M, Heib C, Hörl W, Kern O, Starnecker M, Domling A (1996) Molecular libraries in liquid phase via Ugi-MCR. Res Chem Intermed 22: 625–644. doi:10.1163/156856796X00115

    Article  CAS  Google Scholar 

  25. Hayashi K, Nunami K, Kato J, Yoneda N, Kubo M, Ochiai T, Ishida R (1989) Studies on angiotensin converting enzyme inhibitors. 4. Synthesis and angiotensin converting enzyme inhibitory activities of 3-acyl-1-alkyl-2-oxoimidazolidine-4-carboxylic acid derivatives. J Med Chem 32: 289–297. doi:10.1021/jm00122a003

    Article  PubMed  CAS  Google Scholar 

  26. Basso A, Banfi L, Riva R, Guanti G (2005) A novel highly selective chiral auxiliary for the asymmetric synthesis of L- and D α-amino acid derivatives via a multicomponent Ugi reaction. J Org Chem 70: 575–579. doi:10.1021/jo048389m

    Article  PubMed  CAS  Google Scholar 

  27. Basso A, Banfi L, Riva R, Guanti G (2004) U-4C-3CR versus U-5C-4CR and stereochemical outcomes using suitable bicyclic β-amino acid derivatives as bifunctional components in the Ugi reaction. Tetrahedron Lett 45: 587–590. doi:10.1016/j.tetlet.2003.10.193

    Article  CAS  Google Scholar 

  28. Basso A, Banfi L, Riva R, Guanti G (2006) Preparation of optically pure fused polycyclic scaffolds by Ugi reaction followed by olefin and enyne metathesis. Tetrahedron 62: 8830–8837. doi:10.1016/j.tet.2006.06.061

    Article  CAS  Google Scholar 

  29. Banfi L, Basso A, Guanti G, Riva R (2004) Enantio- and diastereoselective synthesis of 2,5-disubstituted pyrrolidines through a multicomponent Ugi reaction and their transformation into bicyclic scaffolds. Tetrahedron Lett 45: 6637–6640. doi:10.1016/j.tetlet.2004.07.015

    Article  CAS  Google Scholar 

  30. Nenajdenko VG, Gulevich AV, Balenkova ES (2006) The Ugi reaction with 2-substituted cyclic imines. Synthesis of substituted proline and homoproline derivatives. Tetrahedron 62: 5922–5930. doi:10.1016/j.tet.2006.04.021

    Article  CAS  Google Scholar 

  31. Harriman GCB (1997) Synthesis of small and medium sized 2,2-disubstituted lactams via the “intramolecular” three component Ugi reaction. Tetrahedron Lett 38: 5591–5594. doi:10.1016/S0040-4039(97)01265-3

    Article  CAS  Google Scholar 

  32. Hanusch-Kompa C, Ugi I (1998) Multi-component reactions 13: synthesis of γ-lactams as part of a multiring system via Ugi-4-centre-3-component reaction. Tetrahedron Lett 39: 2725–2728. doi:10.1016/S0040-4039(98)00428-6

    Article  CAS  Google Scholar 

  33. Short KM, Mjalli AMM (1997) A solid-phase combinatorial method for the synthesis of novel 5- and 6-membered ring lactams. Tetrahedron Lett 38: 359–362. doi:10.1016/S0040-4039(96)02303-9

    Article  CAS  Google Scholar 

  34. Samanen JM et al (1996) Potent, selective, orally active 3-oxo-1,4-benzodiazepine GPIIb/IIIa integrin antagonists. J Med Chem 39: 4867–4870. doi:10.1021/jm960558a

    Article  PubMed  CAS  Google Scholar 

  35. Keenan RM et al (1997) Discovery of potent nonpeptide vitronectin receptor (α V β3) antagonists. J Med Chem 40: 2289–2292. doi:10.1021/jm970205r

    Article  PubMed  CAS  Google Scholar 

  36. Chibale K (2005) Economic drug discovery and rational medicinal chemistry for tropical diseases. Pure Appl Chem 77: 1957–1964. doi:10.1351/pac200577111957

    Article  CAS  Google Scholar 

  37. Musonda CC et al (2006) Application of multicomponent reactions to antimalarial drug discovery. Part 2: new antiplasmodial and antitrypanosomal 4-aminoquinoline γ- and δ-lactams via a ‘catch and release’ protocol. Bioorg Med Chem 14: 5605–5615. doi:10.1016/j.bmc.2006.04.035

    Article  PubMed  CAS  Google Scholar 

  38. Basso A, Banfi L, Guanti G, Riva R (2005) One-pot synthesis of α-acyloxyaminoamides via nitrones as imine surrogates in the Ugi MCR. Tetrahedron Lett 46: 8003–8006. doi:10.1016/j.tetlet.2005.09.072

    Article  CAS  Google Scholar 

  39. Pirrung MC, Ghorai S (2006) Versatile, fragrant, convertible isonitriles. J Am Chem Soc 128: 11772–11773. doi:10.1021/ja0644374

    Article  PubMed  CAS  Google Scholar 

  40. Hulme C, Ma L, Cherrier M-P, Romano JJ, Morton G, Duquenne C, Salvino J, Labaudiniere R (2000) Novel applications of convertible isonitriles for the synthesis of mono and bicyclic γ-lactams via a UDC strategy. Tetrahedron Lett 41: 1883–1887. doi:10.1016/S0040-4039(00)00052-6

    Article  CAS  Google Scholar 

  41. Nixey T, Kelly M, Semin D, Hulme C (2002) Short solution phase preparation of fused azepine-tetrazoles via a UDC (Ugi/de-Boc/cyclize) strategy. Tetrahedron Lett 43: 3681–3684. doi:10.1016/S0040-4039(02)00636-6

    Article  CAS  Google Scholar 

  42. Nixey T, Tempest P, Hulme C (2002) Two-step solution-phase synthesis of novel quinoxalinones utilizing a UDC (Ugi/de-Boc/cyclize) strategy. Tetrahedron Lett 43: 1637–1639. doi:10.1016/S0040-4039(02)00101-6

    Article  CAS  Google Scholar 

  43. Tempest P, Ma V, Kelly MG, Jones W, Hulme C (2001) MCC/SNAr methodology. Part 1: novel access to a range of heterocyclic cores. Tetrahedron Lett 42: 4963–4968. doi:10.1016/S0040-4039(01)00920-0

    Article  CAS  Google Scholar 

  44. Tempest P, Ma V, Thomas S, Hua Z, Kelly MG, Hulme C (2001) Two-step solution-phase synthesis of novel benzimidazoles utilizing a UDC (Ugi/de-Boc/cyclize) strategy. Tetrahedron Lett 42: 4959–4962. doi:10.1016/S0040-4039(01)00919-4

    Article  CAS  Google Scholar 

  45. Hulme C, Ma L, Romano JJ, Morton G, Tang S-Y, Cherrier M-P, Choi S, Salvino J, Labaudiniere R (2000) Novel applications of carbon dioxide/MeOH for the synthesis of hydantoins and cyclic ureas via the Ugi reaction. Tetrahedron Lett 41: 1889–1893. doi:10.1016/S0040-4039(00)00053-8

    Article  CAS  Google Scholar 

  46. Hulme C, Ma L, Kumar NV, Krolikowski PH, Allen AC, Labaudiniere R (2000) Novel applications of resin bound [alpha]-amino acids for the synthesis of benzodiazepines (via Wang resin) and ketopiperazines (via hydroxymethyl resin). Tetrahedron Lett 41: 1509–1514. doi:10.1016/S0040-4039(99)02326-6

    Article  CAS  Google Scholar 

  47. Hulme C, Ma L, Romano J, Morrissette M (1999) Remarkable three-step-one-pot solution phase preparation of novel imidazolines utilizing a UDC (Ugi/de-Boc/cyclize) strategy. Tetrahedron Lett 40: 7925–7928. doi:10.1016/S0040-4039(99)01580-4

    Article  CAS  Google Scholar 

  48. Hulme C, Cherrier M-P (1999) Novel applications of ethyl glyoxalate with the Ugi MCR. Tetrahedron Lett 40: 5295–5299. doi:10.1016/S0040-4039(99)00960-0

    Article  CAS  Google Scholar 

  49. Hulme C, Peng J, Louridas B, Menard P, Krolikowski P, Kumar NV (1998) Applications of N-BOC-diamines for the solution phase synthesis of ketopiperazine libraries utilizing a Ugi/De-BOC/Cyclization (UDC) strategy. Tetrahedron Lett 39: 8047–8050. doi:10.1016/S0040-4039(98)01770-5

    Article  CAS  Google Scholar 

  50. Hulme C, Peng J, Tang S-Y, Burns CJ, Morize I, Labaudiniere R (1998) Improved procedure for the solution phase preparation of 1,4-benzodiazepine-2,5-dione libraries via Armstrong’s convertible isonitrile and the Ugi reaction. J Org Chem 63: 8021–8023. doi:10.1021/jo980622r

    Article  CAS  Google Scholar 

  51. Hulme C, Peng J, Morton G, Salvino JM, Herpin T, Labaudiniere R (1998) Novel safety-catch linker and its application with a Ugi/De-BOC/cyclization (UDC) strategy to access carboxylic acids, 1,4-benzodiazepines, diketopiperazines, ketopiperazines and dihydroquinoxalinones. Tetrahedron Lett 39: 7227–7230. doi:10.1016/S0040-4039(98)01593-7

    Article  CAS  Google Scholar 

  52. Hulme C, Morrissette MM, Volz FA, Burns CJ (1998) The solution phase synthesis of diketopiperazine libraries via the Ugi reaction: novel application of Armstrong’s convertible isonitrile. Tetrahedron Lett 39: 1113–1116. doi:10.1016/S0040-4039(97)10795-X

    Article  CAS  Google Scholar 

  53. Zhang J, Jacobson A, Rusche JR, Herlihy W (1999) Unique structures generated by Ugi 3CC reactions using bifunctional starting materials containing aldehyde and carboxylic acid. J Org Chem 64: 1074–1076. doi:10.1021/jo982192a

    Article  PubMed  CAS  Google Scholar 

  54. Bleasdale DA, Jones DW (1991) 2-Benzopyran-3-ones as synthetic building blocks; regioselective Diels–Alder additions with simple olefins leading to aromatic steroids. J Chem Soc Perk T 1 1: 1683–1692

    Article  Google Scholar 

  55. Moody CJ, Rahimtoola KF (1990) Diels–Alder reactivity of pyrano[4,3-b]indol-3-ones, indole 2,3-quinodimethane analogues. J Chem Soc Perk T 1 673–679

    Article  Google Scholar 

  56. Gray NM et al (1991) Novel indole-2-carboxylates as ligands for the strychnine-insensitive N-methyl-D-aspartate-linked glycine receptor. J Med Chem 34: 1283–1292. doi:10.1021/jm00108a007

    Article  PubMed  CAS  Google Scholar 

  57. Krelaus R, Westermann B (2004) Preparation of peptide-like bicyclic lactams via a sequential Ugi reaction — olefin metathesis approach. Tetrahedron Lett 45: 5987–5990. doi:10.1016/j.tetlet.2004.06.052

    Article  CAS  Google Scholar 

  58. Westermann B, Diedrichs N, Krelaus R, Walter A, Gedrath I (2004) Diastereoselective synthesis of homologous bicyclic lactams–potential building blocks for peptide mimics. Tetrahedron Lett 45: 5983–5986. doi:10.1016/j.tetlet.2004.06.051

    Article  CAS  Google Scholar 

  59. Marcaccini S, Miguel D, Torroba T, Garcia-Valverde M (2003) 1,4-Thiazepines, 1,4-benzothiazepin-5-ones, and 1,4-benzothioxepin orthoamides via multicomponent reactions of isocyanides. J Org Chem 68: 3315–3318. doi:10.1021/jo026614z

    Article  PubMed  CAS  Google Scholar 

  60. Drew MGB, Fengler-Veith M, Harwood LM, Jahans AW (1997) Highly selective chirally templated isomünchnone cycloadditions of achiral aldehydes: synthesis of an enantiopure [alpha],[beta]-dihydroxyacid. Tetrahedron Lett 38: 4521–4524. doi:10.1016/S0040-4039(97)00919-2

    Article  CAS  Google Scholar 

  61. Arrhenius G, Bladridge KK, Richards-Gross S, Siegel JS (1997) Glycolonitrile oligomerization: structure of isolated oxazolines, potential heterocycles on the early earth. J Org Chem 62: 5522–5525. doi:10.1021/jo962185r

    Article  PubMed  CAS  Google Scholar 

  62. Laurenti D, Santelli-Rouvier C, Pepe G, Santelli M (2000) Synthesis of cis,cis,cis-tetrasubstituted cyclobutanes. Trapping of tetrahedral intermediates in intramolecular nucleophilic addition. J Org Chem 65: 6418–6422. doi:10.1021/jo000361x

    CAS  Google Scholar 

  63. Kaneko T, Wong H, Doyle TW, Rose WC, Bradner WT (1985) Bicyclic and tricyclic analogs of anthramycin. J Med Chem 28: 388–392. doi:10.1021/jm00381a020

    Article  PubMed  CAS  Google Scholar 

  64. Hara T et al (1978) Diazepines. 5. Synthesis and biological action of 6-phenyl-4H-pyrrolo[1,2-a][1,4]benzodiazepines. J Med Chem 21: 263–268. doi:10.1021/jm00201a005

    Article  PubMed  CAS  Google Scholar 

  65. Ilyin AP, Kuzovkova J, Shkirando A, Ivachtchenko A (2005) An efficient synthesis of 3-oxo-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine-1-carboxamides using novel modification of Ugi condensation. Heterocycl Commun 11: 523–526

    Google Scholar 

  66. Ilyin AP et al (2006) Synthesis of 7,8-dihydrothieno[3’2’4,5]pyrrolo[1,2-a]pyrazin-5(6H)-using a modification of four-component Ugi reaction. Synth Commun 36: 903–910. doi:10.1080/00397910500466140

    Article  CAS  Google Scholar 

  67. Nenajdenko VG, Reznichenko AL, Balenkova ES (2007) Diastereoselective Ugi reaction without chiral amines: the synthesis of chiral pyrroloketopiperazines. Tetrahedron 63: 3031–3041. doi:10.1016/j.tet.2007.01.056

    Article  CAS  Google Scholar 

  68. Ilyin AP, Trifilenkov AS, Kurashvili ID, Krasavin M, Ivachtchenko AV (2005) One-step construction of peptidomimetic 5-carbamoyl-4-sulfonyl-2-piperazinones. J Comb Chem 7: 360–363. doi:10.1021/cc0500147

    Article  PubMed  CAS  Google Scholar 

  69. Giannis A, Kolter T (1993) Peptidomimetics for receptor ligands — discovery, development, and medical perspectives. Angew Chem Int Ed Engl 32: 1244–1267. doi:10.1002/anie.199312441

    Article  Google Scholar 

  70. Ilyin AP et al (2006) One-step assembly of carbamoyl substituted annulated 1,4-oxazepines. Tetrahedron Lett 47: 2649–2653. doi:10.1016/j.tetlet.2006.01.158

    Article  CAS  Google Scholar 

  71. Trifilenkov AS et al (2006) Liquid-phase parallel synthesis of combinatorial libraries of substituted 6-carbamoyl-3,4-dihydro-2H-benzo[1,4]thiazines. J Comb Chem 8: 469–479. doi:10.1021/cc050132u

    Article  PubMed  CAS  Google Scholar 

  72. Ilyin AP et al (2006) One-step assembly of carbamoyl-substituted heteroannelated [1,4]thiazepines. J Org Chem 71: 2811–2819. doi:10.1021/jo052640w

    Article  CAS  Google Scholar 

  73. Blackburn C, Guan B, Fleming P, Shiosaki K, Tsai S (1998) Parallel synthesis of 3-aminoimidazo[1,2-a]pyridines and pyrazines by a new three-component condensation. Tetrahedron Lett 39: 3635–3638. doi:10.1016/S0040-4039(98)00653-4

    Article  CAS  Google Scholar 

  74. Groebke K, Weber L, Mehlin F (1998) Synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett 661–663 doi:10.1055/s-1998-1721

  75. Masquelin T et al (2006) Sequential Ugi/Strecker reactions via microwave assisted organic synthesis: novel 3-center-4-component and 3-center-5-component multi-component reactions. Tetrahedron Lett 47: 2989–2991. doi:10.1016/j.tetlet.2006.01.160

    Article  CAS  Google Scholar 

  76. Schwerkoske J, Masquelin T, Perun T, Hulme C (2005) New multi-component reaction accessing 3-aminoimidazo[1,2-a]pyridines. Tetrahedron Lett 46: 8355–8357. doi:10.1016/j.tetlet.2005.09.181

    Article  CAS  Google Scholar 

  77. Hulme C, Lee YS (2008) Emerging approaches for the syntheses of bicyclic imidazo[1,2-x]-heterocycles. Mol Divers 12: 1–15. doi:10.1007/s11030-008-9072-1

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Hulme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulme, C., Dietrich, J. Emerging molecular diversity from the intra-molecular Ugi reaction: iterative efficiency in medicinal chemistry. Mol Divers 13, 195–207 (2009). https://doi.org/10.1007/s11030-009-9111-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-009-9111-6

Keywords

Navigation