Skip to main content
Log in

Electrocatalytic multicomponent assembling of isatins, 3-methyl-2-pyrazolin-5-ones and malononitrile: facile and convenient way to functionalized spirocyclic [indole-3,4′-pyrano[2,3-c]pyrazole] system

  • Full Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Electrochemically induced catalytic multicomponent transformation of isatins, 3-methyl-2-pyrazolin-5-ones and malononitrile in ethanol in an undivided cell in the presence of sodium bromide as an electrolyte results in the formation of spirooxindoles with fused functionalized pyrano[2,3-c]pyrazole system in 78–99} yields. The developed efficient electrocatalytic approach to medicinally relevant spirocyclic [indole-3,4′-pyrano[2,3-c]pyrazoles] is beneficial from the viewpoint of diversity-oriented large-scale processes and represents a novel example of facile environmentally benign synthetic concept for electrocatalytic multicomponent reaction strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thompson LA (2000) Recent applications of polymer-supported reagents and scavengers in combinatorial, parallel, or multistep synthesis. Curr Opin Chem Biol 4: 324–337. doi:10.1016/S1367-5931(00)00096-X

    Article  PubMed  CAS  Google Scholar 

  2. Nefzi A, Ostresh JM, Houghten RA (1997) The current status of heterocyclic combinatorial libraries. Chem Rev 97: 449–472. doi:10.1021/cr960010b

    Article  PubMed  CAS  Google Scholar 

  3. Weber L (2002) Multi-component reactions and evolutionary chemistry. Drug Discov Today 7: 143–147

    PubMed  CAS  Google Scholar 

  4. Dömling A (2002) Recent advances in isocyanide-based multicomponent chemistry. Curr Opin Chem Biol 6: 306–313. doi:10.1016/S1367-5931(02)00328-9

    Article  PubMed  Google Scholar 

  5. Mironov MA (2006) Design of multi-component reactions: from libraries of compounds to libraries of reactions. QSAR Comb Sci 25: 423–431. doi:10.1002/qsar.200540190

    Article  CAS  Google Scholar 

  6. Ramón DJ, Yus M (2005) Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew Chem Int Ed 44: 1602–1634

    Article  Google Scholar 

  7. Orru RVA, de Greef M (2003) Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis 10: 1471–1499. doi:10.1055/s-2003-40507

    Article  Google Scholar 

  8. Williams RM, Cox RJ (2003) Paraherquamides, brevianamides, and asperparalines: laboratory synthesis and biosynthesis. An interim report. Acc Chem Res 36: 127–139. doi:10.1021/ar020229e

    Article  CAS  Google Scholar 

  9. Cui CB, Kakeya H, Osada H (1996) Novel mammalian cell cycle inhibitors, spirotryprostatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron 52: 12651–12666. doi:10.1016/0040-4020(96)00737-5

    Article  CAS  Google Scholar 

  10. Leclercq J, de Pauw-Gillet MC, Bassleer R, Angenot L (1986) Screening of cytotoxic activities of Strychnos alkaloids (methods and results). J Ethnopharmacol 15: 305–316. doi:10.1016/0378-8741(86)90169-8

    Article  PubMed  CAS  Google Scholar 

  11. Alper PB, Meyers C, Lerchner A, Siegel DR, Carreira EM (1999) Facile, novel methodology for the synthesis of spiro[pyrrolidin-3,3-oxindoles]: catalyzed ring expansion reactions of cyclopropanes by aldimines. Angew Chem Int Ed 38: 3186–3189. doi:10.1002/(SICI)1521-3773(19991102)38:21<3186::AID-AN IE3186>3.0.CO;2-E

    Article  CAS  Google Scholar 

  12. Foloppe N, Fisher LM, Howes R, Potter A, Robertson AGS, Surgenor AE (2006) Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening. Bioorg Med Chem 14: 4792–4802. doi:10.1016/j.bmc.2006.03.021

    Article  PubMed  CAS  Google Scholar 

  13. Mishriky N, Girgis AS, Asaad FM, Ibrahim YA, Sobieh UI, Fawzy NG (2001) Simple synthesis of condensed pyran containing compounds and their antimicrobial properties. Boll Chim Farm 140: 129–139

    PubMed  CAS  Google Scholar 

  14. Ebtisam AAH, Galil FMA, Sherif SM, Elnagdi MH (1986) Nitriles in heterocyclic synthesis. A novel synthesis of spiropyran-ylindolidene derivatives. J Heterocycl Chem 4: 1375–1378

    Google Scholar 

  15. Dworczak R (1991) Synthesen mit nitrilen, 88 Mitt.: spiro[indol- und spiro[inden-pyrano[2,3-c]pyrazole] aus cyanmethylenderivaten und pyrazolonen. Monatsh Chem 122: 731–737. doi:10.1007/BF00811473

    Article  CAS  Google Scholar 

  16. Higashiyama K, Otomasu H (1980) Spiro heterocyclic compounds. III. Synthesis of spiro[oxindole-4′-(4′H-pyran] compounds. Chem Pharm Bull (Tokyo) 3: 648–651

    Google Scholar 

  17. El-Latif FFA, Gohar AEMN, Fahmy AM, Badr MZA (1986) Novel synthesis of furo[2,3-b]indole derivatives. Bull Chem Soc Jpn 59: 1235–1238. doi:10.1246/bcsj.59.1235

    Article  Google Scholar 

  18. Shanthi G, Subbulakshmi G, Perumal PT (2007) A new InCl3- catalyzed, facile and efficient method for the synthesis of spirooxindoles under conventional and solvent-free microwave conditions. Tetrahedron 63: 2057–2063. doi:10.1016/j.tet.2006.12.042

    Article  CAS  Google Scholar 

  19. Lund H (2000) Organic electrochemistry, 4 edn. Marcell Dekker Inc, New York

    Google Scholar 

  20. Elinson MN, Feducovich SK, Lizunova TL, Nikishin GI (2000) Electrochemical transformation of malononitrile and carbonyl compounds into functionally substituted cyclopropanes: electrocatalytic variant of the Wideqvist reaction. Tetrahedron 56: 3063–3069. doi:10.1016/S0040-4020(00)00195-2

    Article  CAS  Google Scholar 

  21. Elinson MN, Dorofeev AS, Miloserdov FM, Ilovaisky AI, Feducovich SK, Belyakov PA, Nikishin GI (2008) Catalysis of salicylaldehydes and two different C–H acids with electricity: first example of an efficient multicomponent approach to the design of functionalized medicinally privileged 2-amino-4H-chromene scaffold. Adv Synth Catal 350: 591–601. doi:10.1002/adsc.200700493

    Article  CAS  Google Scholar 

  22. Elinson MN, Ilovaisky AI, Dorofeev AS, Merkulova VM, Stepanov NO, Miloserdov FM, Ogibin YN, Nikishin GI (2007) Electrocatalytic multicomponent transformation of cyclic 1,3-diketones, isatins, and malononitrile: facile and convenient way to functionalized spirocyclic (5,6,7,8-tetrahydro-4H-chromene)-4,3′-oxindole system. Tetrahedron 63: 10543–10548. doi:10.1016/j.tet.2007.07.080

    Article  CAS  Google Scholar 

  23. Elinson MN, Dorofeev AS, Feducovich SK, Nasybullin RF, Gorbunov SV, Nikishin GI (2006) Electrocatalytic chain transformation of salicylaldehydes and malononitrile into substituted 4H-chromenes. Electrochem Commun 8: 1567–1571. doi:10.1016/j.elecom.2006.07.009

    Article  CAS  Google Scholar 

  24. Dandia A, Arya K, Sati M, Sharma R (2003) Facile microwave-assisted solid phase synthesis of spiro[3H-indole-3,4′-pyrazolo[3,4-b]pyridines]. Heterocycl Commun 9: 415–420

    CAS  Google Scholar 

  25. Patai S, Israeli Y (1960) The kinetics and mechanisms of carbonyl–methylene condensations. Part VII. The reaction of malononitrile with aromatic aldehydes in ethanol. J Chem Soc 2025–2030. doi:10.1039/jr9600002025

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michail N. Elinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elinson, M.N., Dorofeev, A.S., Miloserdov, F.M. et al. Electrocatalytic multicomponent assembling of isatins, 3-methyl-2-pyrazolin-5-ones and malononitrile: facile and convenient way to functionalized spirocyclic [indole-3,4′-pyrano[2,3-c]pyrazole] system. Mol Divers 13, 47–52 (2009). https://doi.org/10.1007/s11030-008-9100-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-008-9100-1

Keywords

Navigation