Skip to main content

Advertisement

Log in

Structural features of diverse ligands influencing binding affinities to Estrogen α and Estrogen β receptors. Part I: molecular descriptors calculated from minimal energy conformation of isolated ligands

  • Full Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

We report a neural network modeling approach combined with genetic algorithm for prediction of experimental binding affinity to human Estrogen Receptor α and β (ER-α and ER-β) of a diverse set of chemicals. The counterpropagation artificial neural network is used as a modeling method. Structural features of ligands having the strongest influence to the binding affinities were investigated. The molecular descriptors have been selected in the variable selection procedure based on the genetic algorithm (GA). The 3D descriptors of molecular structures were calculated for the minimal energy conformation of isolated ligands. All the optimized models were tested by an internal and an external set of compounds. The models served for classification and prediction of binding affinities. The optimized models were 100% correct in the classification part, where the active molecules were separated from the inactive ones. The best predictive model of active molecules was assessed with the internal test set yielding the error in prediction RMS = 0.12, while the predictions for the external test set contain some outliers, which are ascribed to the incompatibility of individual compounds concerning the structural domain of our model. The influence of the receptor on the conformation of the ligands in the ligand–protein complex is described and discussed in the accompanying paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CP-ANN:

Counterpropagation artificial neuronal network

ER:

Estrogen receptor

GA:

Genetic algorithm

RBA:

Relative binding affinity

RMS:

Root mean square error

References

  1. Kuiper GGJM, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg P, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139: 4252–4263

    Article  CAS  Google Scholar 

  2. Brzozowski AM, Pike ACW, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389: 753–758

    Article  CAS  Google Scholar 

  3. Kuiper GJM, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptor α and β. Endocrinology 138: 863–870

    Article  CAS  Google Scholar 

  4. Toppari J, Larsen JC, Christiansen P, Giwercman A, Grandjean P, Guillette LJ Jr, Je’gou B, Jensen TK, Jouannet P, Keiding N, Leffers H, McLachlan JA, Meyer O, Muűller J, Rajpert-De Meyts E, Scheike T, Sharpe R, Sumpter J, Skakkebæk NE (1996) Male reproductive health and environmental xenoestrogen. Environ Health Persp 104: 741–803

    Article  CAS  Google Scholar 

  5. Elsby R, Ashby J, Sumpter J, Brooks A, Pennie W, Maggs J, Lefevre P, Odum J, Beresford N, Paton D, Park BK (2000) Obstacles to the prediction of estrogenicity from chemical structure: assay-mediated metabolic transformation and the apparent promiscuous nature of the estrogen receptor. Biochem Pharmacol 60: 1519–1530

    Article  CAS  Google Scholar 

  6. Damstra T, Barlow S, Bergman A, Kavlock R, Van Der Kraak G (2000) Global assessment of the state-of-the-science of endocrine disruptors international in programme on chemical safety, ICPS-WHO

  7. De Voogt P, Van Hattum B (2003) Critical factors in exposure modeling of endocrine active substances. Pure Appl Chem 75: 1933–1948

    Article  CAS  Google Scholar 

  8. Huetz P, Kamarulzaman EE, Wahab HA, Mavri J (2004) Chemical reactivity as a tool to study carcinogenicity: reaction between estradiol and estrone 3,4-quinones ultimate carcinogens and guanine. J Chem Inf Comput Sci 44: 310–314

    Article  CAS  Google Scholar 

  9. Rogan EG, Badawi AF, Devanesan PD, Meza JL, Edney JA, West WW, Higginbotham SM, Cavalieri EL (2003) Relative imbalances in estrogen metabolism and conjugation in breast tissue of women with carcinoma: potential biomarkers of susceptibility to cancer. Carcinogenesis 24: 697–702

    Article  CAS  Google Scholar 

  10. Devanesan P, Todorovic R, Zhao J, Gross ML, Rogan EG, Cavalieri EL (2001) Catechol estrogen conjugates and DNA adducts in the kidney of male Syrian golden hamsters treated with 4-hydroxyestradiol: potential biomarkers for estrogen-initiated cancer. Carcinogenesis 22: 489–497

    Article  CAS  Google Scholar 

  11. Liu HX, Papa E, Gramatica P (2006) QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Chem Res Toxicol 19: 1540–1548

    Article  CAS  Google Scholar 

  12. Zupan J, Novič M, Ruisanchez I (1997) Kohonen and counter-propagation artificial neural networks in analytical chemistry. Chemometr Intell Lab 38: 1–23

    Article  CAS  Google Scholar 

  13. Katritzky AR, Lobanov VS, Karelson M (1996) CODESSA reference manual, version 2.0. University of Florida

  14. Stewart JJP (1989) MOPAC 6.0 program package. QCPE, No 455

  15. CambridgeSoft Corporation, http://www.cambridgesoft.com

  16. Halgren TA (1996) Merck molecular force field: I. Basis, form, scope, parameterization and performance of MMFF94. J Comp Chem 17: 490–519

    Article  CAS  Google Scholar 

  17. http://csep1.phy.ornl.gov/mc/mc.html

  18. Walters P, Stahl (Copyright (C) (1992–1996) M BABEL: Babel version 1.3

  19. Dewar MJS, Zoebisch EG, Healy EF, Stewart J-JP (1985) The development and use of quantum-mechanical molecular- models.76. AM1 – a new general purpose quantum-mechanichal molecular-model. J Am Chem Soc 107: 3902–3909

    Article  CAS  Google Scholar 

  20. Stewart JJP (1989) Optimization of parameters for semi-empirical methods I-method. J Comp Chem 10:209–220, (b) Stewart JJP (1989) Optimization of parameters for semi-empirical methods II-applications. J Comp Chem 10:221–264

    Google Scholar 

  21. Hecht-Nielsen R (1987) Counterpropagation networks. Appl Optics 26: 4979–4984

    Article  Google Scholar 

  22. Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  23. Kohonen T (1988) Self-organization and associative memory. Springer-Verlag, Berlin

    Google Scholar 

  24. Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York

    Google Scholar 

  25. Hibbert (1993) Genetic algorithm in chemistry. Chemometr Intell Lab 19: 277–293

    Article  CAS  Google Scholar 

  26. Harris HA, Bapat AR, Gonder DS, Frail DE (2002) The ligand binding profiles of estrogen receptors alpha and beta are species dependent. Steroids 67: 379–384

    Article  CAS  Google Scholar 

  27. Physical Properties Database (PHYSPROP) available from: http://www.syrres.com/esc/physprop.htm

  28. KOW WIN v1.66, on-line demo. Available from: http://www.syrres.com/esc/kowwin.htm, http://www.logp.com/

  29. Katritzky AR, Lobanov VS, Karelson M (1994) Comprehensive descriptors for structural and statistical analysis reference manual, version 2.0. Gainesville

  30. COD to Table Program Package, Center for Computational Science, University of Trieste

  31. Novič M, Zupan J (1995) Investigation of infrared spectra-structure correlation using Kohonen and Counter-propagation neural network. J Chem Inf Comput Sci 35: 454–466

    Article  Google Scholar 

  32. Marini F, Roncaglioni A, Novič M (2005) Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders. J Chem Inf Model 45: 1507–1519

    Article  CAS  Google Scholar 

  33. Sun J, Baudry J, Katzenellenbogen JA, Katzenellenbogen BS (2003) Molecular basis for the subtype discrimination of the estrogen receptor β selective ligand. Diarylpropionitrile. Mol Endocrinol 17: 247–258

    Article  CAS  Google Scholar 

  34. Sun J, Huang YR, Harrington WR, Sheng S, Katzenellenbogen JA, Katzenellenbogen BS (2002) Antagonists selective for estrogen receptor α. Endocrinology 143: 941–947

    Article  CAS  Google Scholar 

  35. Katzenellenbogen JA, Muthyala R, Katzenellenbogen BS (2003) Nature of the ligand-binding pocket of estrogen receptor α and β: the search for subtypeselective ligands and implications for the prediction of estrogenic activity. Pure Appl Chem 75: 2397–2403

    Article  CAS  Google Scholar 

  36. Maran E, Novič M, Barbieri P, Zupan J (2004) Application of counterpropagation artificial neural network for modeling properties of fish antibiotics. SAR QSAR Environ Res 15: 469–480

    Article  CAS  Google Scholar 

  37. Roncaglioni A, Novič M, Vračko M, Benfenati E (2004) Classification of potential endocrine disrupters on the basis of molecular structure using a nonlinear modeling method. J Chem Inf Model 44: 300–309

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjana Novič.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boriani, E., Spreafico, M., Benfenati, E. et al. Structural features of diverse ligands influencing binding affinities to Estrogen α and Estrogen β receptors. Part I: molecular descriptors calculated from minimal energy conformation of isolated ligands. Mol Divers 11, 153–169 (2007). https://doi.org/10.1007/s11030-008-9069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-008-9069-9

Keywords

Navigation