Skip to main content

Advertisement

Log in

Recognition and elimination of diversified pathogens in insect defense systems

  • Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

The elimination of infectious non-self by the host defense systems of multicellular organisms requires a variety of recognition and effector molecules. The diversity is generated in somatic cells or encoded in the germ-line. In adaptive immunity in jawed vertebrates, the diversity of immunoglobulins and antigen receptors is generated by gene rearrangements in somatic cells. In innate immunity, various effector molecules and pattern recognition receptors, such as antimicrobial peptides and peptidoglycan recognition proteins, are encoded in the germ-line of multicellular organisms, including insects and jawed vertebrates. In the present review, we discuss how insect host defense systems recognize and eliminate a multitude of microbes via germ-line-encoded molecules, including recent findings that a Drosophila member of the immunoglobulin superfamily is extensively diversified by alternative splicing in somatic immune cells and participates in the elimination of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAP:

diaminopimelic acid

Dscam:

Down syndrome cell adhesion molecule

GNBP:

Gram-negative binding protein

IKK:

IκB kinase

Ig:

immunoglobulin

GlcNAc:

N-acetylglucosamine

MurNAc:

N-acetylmuramic acid

NF-κB:

nuclear factor κB

PGRP:

peptidoglycan recognition protein

PPAE:

proPO activating enzyme

proPO:

prophenoloxidase

TLR:

Toll-like receptor

TNF:

tumor necrosis factor

References

  1. Janeway, C.A. Jr., How the immune system works to protect the host from infection: a personal view, Proc. Natl. Acad. Sci. USA, 98 (2001) 7461–7468.

    Article  CAS  Google Scholar 

  2. Hoffmann, J.A. and Reichhart, J.M., Drosophila innate immunity: an evolutionary perspective, Nat. Immunol., 3 (2002) 121–126.

    Article  CAS  Google Scholar 

  3. Ferrandon, D., Jung A.C., Criqui, M., Lemaitre, B., Uttenweiler-Joseph, S., Michaut, L., Reichhart, J. and Hoffmann, J.A., A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway, EMBO J., 17 (1998) 1217–1227.

  4. Hoffmann, J.A., The immune response of Drosophila, Nature, 426 (2003) 33–38.

    Article  CAS  Google Scholar 

  5. Hultmark, D., Drosophila immunity: paths and patterns, Curr. Opin. Immunol., 15 (2003) 12–19.

    Article  CAS  Google Scholar 

  6. Steiner, H., Hultmark, D., Engstrom, A., Bennich, H. and Boman, H.G., Sequence and specificity of two antibacterial proteins involved in insect immunity, Nature, 292 (1981) 246–248.

    Article  CAS  Google Scholar 

  7. Bulet, P., Stocklin, R. and Menin, L., Anti-microbial peptides: from invertebrates to vertebrates, Immunol Rev., 198 (2004) 169–184.

    Article  CAS  Google Scholar 

  8. Natori, S., Bacteriocidal substance induced in the hemolymph of Sarcophaga peregrina larvae, J. Insect Physiol., 23 (1977) 1169–1173.

    Article  CAS  Google Scholar 

  9. Okada, M. and Natori, S., Purification and characterization of an antibacterial protein from haemolymph of Sarcophaga peregrina (flesh-fly) larvae, Biochem. J., 211 (1983) 727–734.

    CAS  Google Scholar 

  10. Ando, K., Okada, M. and Natori, S., Purification of sarcotoxin II, antibacterial proteins of Sarcophaga peregrina (flesh fly) larvae, Biochemistry, 26 (1987) 226–230.

    Article  CAS  Google Scholar 

  11. Baba, K., Okada, M., Kawano, T., Komano, H. and Natori, S., Purification of sarcotoxin III, a new antibacterial protein of Sarcophaga peregrina, J. Biochem. (Tokyo)., 102 (1987) 69–74.

    CAS  Google Scholar 

  12. Matsuyama, K. and Natori, S., Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina, J. Biol. Chem., 263 (1988) 17112–17116.

    CAS  Google Scholar 

  13. Iijima, R., Kurata, S. and Natori, S., Purification, characterization, and cDNA cloning of an antifungal protein from the hemolymph of Sarcophaga peregrina (flesh fly) larvae, J. Biol. Chem., 268 (1993) 12055–12061.

    CAS  Google Scholar 

  14. Okada, M. and Natori, S., Mode of action of a bactericidal protein induced in the haemolymph of Sarcophaga peregrina (flesh-fly) larvae, Biochem. J., 222 (1984) 119–124.

    CAS  Google Scholar 

  15. Kanai, A. and Natori, S., Cloning of gene cluster for sarcotoxin I, antibacterial proteins of Sarcophaga peregrina, FEBS Lett., 258 (1989) 199–202.

    Article  CAS  Google Scholar 

  16. Iwai, H., Nakajima, Y., Natori, S., Arata, Y. and Shimada, I., Solution conformation of an antibacterial peptide, sarcotoxin IA, as determined by 1H-NMR, Eur. J. Biochem., 217 (1993) 639–644.

    Article  CAS  Google Scholar 

  17. Nakajima, Y., Qu, X.M. and Natori, S., Interaction between liposomes and sarcotoxin IA, a potent antibacterial protein of Sarcophaga peregrina (flesh fly), J. Biol. Chem., 262 (1987) 1665–1669.

    CAS  Google Scholar 

  18. Ando, K. and Natori, S., Inhibitory effect of sarcotoxin IIA, an antibacterial protein of Sarcophaga peregrina, on growth of Escherichia coli, J. Biochem. (Tokyo)., 103 (1988) 735–739.

    CAS  Google Scholar 

  19. Matsuyama, K. and Natori, S., Mode of action of sapecin, a novel antibacterial protein of Sarcophaga peregrina (flesh fly), J. Biochem. (Tokyo)., 108 (1990) 128–132.

    CAS  Google Scholar 

  20. Matsuyama, K. and Natori, S., Molecular cloning of cDNA for sapecin and unique expression of the sapecin gene during the development of Sarcophaga peregrina, J. Biol. Chem., 263 (1988) 17117–17121.

    CAS  Google Scholar 

  21. Komano, H., Homma, K. and Natori, S., Involvement of sapecin in embryonic cell proliferation of Sarcophaga peregrina (flesh fly), FEBS Lett., 289 (1991) 167–170.

    Article  CAS  Google Scholar 

  22. Silverman, N. and Maniatis, T., NF-kappaB signaling pathways in mammalian and insect innate immunity, Genes Dev., 15 (2001) 2321–2342.

    Article  CAS  Google Scholar 

  23. Georgel, P., Naitza, S., Kappler, C., Ferrandon, D., Zachary, D., Swimmer, C., Kopczynski, C., Duyk, G., Reichhart, J.M. and Hoffmann, J.A., Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis, Dev. Cell, 1 (2001) 503–514.

    Article  CAS  Google Scholar 

  24. Vidal, S., Khush, R.S., Leulier, F., Tzou, P., Nakamura, M. and Lemaitre, B., Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-kappaB-dependent innate immune responses, Genes Dev., 15 (2001) 1900–1912.

    Article  CAS  Google Scholar 

  25. Silverman, N., Zhou, R., Stoven, S., Pandey, N., Hultmark, D. and Maniatis, T., A Drosophila IkappaB kinase complex required for Relish cleavage and antibacterial immunity, Genes Dev., 14 (2000) 2461–2471.

    Article  CAS  Google Scholar 

  26. Rutschmann, S., Jung, A.C., Zhou, R., Silverman, N., Hoffmann, J.A. and Ferrandon, D., Role of Drosophila IKK gamma in a toll-independent antibacterial immune response, Nat. Immunol., 1 (2000) 342–347.

    Article  CAS  Google Scholar 

  27. Leulier, F., Rodriguez, A., Khush, R.S., Abrams, J.M. and Lemaitre, B., The Drosophila caspase Dredd is required to resist gram-negative bacterial infection, EMBO Rep., 1 (2000) 353–358.

    Article  CAS  Google Scholar 

  28. Stoven, S., Ando, I., Kadalayil, L., Engstrom, Y. and Hultmark, D., Activation of the Drosophila NF-kappaB factor Relish by rapid endoproteolytic cleavage, EMBO Rep., 1 (2000) 347–352.

    Article  CAS  Google Scholar 

  29. Hedengren, M., Asling, B., Dushay, M.S., Ando, I., Ekengren, S., Wihlborg, M. and Hultmark, D., Relish, a central factor in the control of humoral but not cellular immunity in Drosophila, Mol. Cell, 4 (1999) 827–837.

    Article  CAS  Google Scholar 

  30. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. and Hoffmann, J.A., The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults, Cell, 86 (1996) 973–983.

    Article  CAS  Google Scholar 

  31. Tauszig-Delamasure, S., Bilak, H., Capovilla, M., Hoffmann, J.A. and Imler, J.L., Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections, Nat. Immunol., 3 (2002) 91–97.

    Article  CAS  Google Scholar 

  32. Ip, Y.T., Reach, M., Engstrom, Y., Kadalayil, L., Cai, H., Gonzalez-Crespo, S., Tatei, K. and Levine M., Dif, a dorsal-related gene that mediates an immune response in Drosophila, Cell, 75 (1993) 753–763.

    Article  CAS  Google Scholar 

  33. Wu, L.P. and Anderson, K.V., Regulated nuclear import of Rel proteins in the Drosophila immune response, Nature, 392 (1998) 93–97.

    Article  CAS  Google Scholar 

  34. Lemaitre, B., Reichhart, J.M. and Hoffmann, J.A., Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms, Proc. Natl. Acad. Sci. USA, 94 (1997) 14614–14619.

    Article  CAS  Google Scholar 

  35. Akira, S., Takeda, K. and Kaisho, T., Toll-like receptors: critical proteins linking innate and acquired immunity, Nat. Immunol., 2 (2001) 675–680.

    Article  CAS  Google Scholar 

  36. Weber, A.N., Tauszig-Delamasure, S., Hoffmann, J.A., Lelievre, E., Gascan, H., Ray, K.P., Morse, M.A., Imler, J.L. and Gay, N.J., Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling, Nat. Immunol., 4 (2003) 794–800.

    Article  CAS  Google Scholar 

  37. Kurata, S., Recognition of infectious non-self and activation of immune responses by peptidoglycan recognition protein (PGRP)-family members in Drosophila, Dev. Comp. Immunol., 28 (2004) 89–95.

    Article  CAS  Google Scholar 

  38. Yoshida, H., Kinoshita, K. and Ashida, M., Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori, J. Biol. Chem., 271 (1996) 13854–13860.

    Article  CAS  Google Scholar 

  39. Cerenius, L. and Söderhäll, K., The prophenoloxidase-activating system in invertebrates, Immunol. Rev., 198 (2004) 116–126.

    Article  CAS  Google Scholar 

  40. Werner, T., Liu, G., Kang, D., Ekengren, S., Steiner, H. and Hultmark, D., A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 97 (2000) 13772–13777.

    Article  CAS  Google Scholar 

  41. Christophides, G.K. et al., Immunity-related genes and gene families in Anopheles gambiae, Science, 298 (2002) 159–165.

    Article  CAS  Google Scholar 

  42. Liu, C., Xu, Z., Gupta, D. and Dziarski, R., Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules, J. Biol. Chem., 276 (2001) 34686–34694.

    Article  CAS  Google Scholar 

  43. Kang, D., Liu, G., Lundstrom, A., Gelius, E. and Steiner, H., A peptidoglycan recognition protein in innate immunity conserved from insects to humans, Proc. Natl. Acad. Sci. USA, 95, (1998) 10078–10082.

    Google Scholar 

  44. Ochiai, M. and Ashida, M., A pattern recognition protein for peptidoglycan. Cloning the cDNA and the gene of the silkworm, Bombyx mori, J. Biol. Chem., 274 (1999) 11854–11858.

    Article  CAS  Google Scholar 

  45. Michel, T., Reichhart, J.M., Hoffmann, J.A. and Royet, J., Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein, Nature, 414 (2001) 756–759.

    Article  CAS  Google Scholar 

  46. Gottar, M., Gobert, V., Michel, T., Belvin, M., Duyk, G., Hoffmann, J.A., Ferrandon, D. and Royet, J., The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein, Nature, 416 (2002) 640–644.

    Article  CAS  Google Scholar 

  47. Choe, K.M., Werner, T., Stoven, S., Hultmark, D. and Anderson, K.V., Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila, Science, 296 (2002) 359–362.

    Article  CAS  Google Scholar 

  48. Rämet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. and Ezekowitz, R.A., Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli, Nature, 416 (2002) 644–648.

    Article  Google Scholar 

  49. Takehana, A,. Katsuyama, T., Yano, T., Oshima, Y., Takada, H., Aigaki, T. and Kurata, S., Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae, Proc. Natl. Acad. Sci. USA, 99 (2002) 13705–13710.

    Article  CAS  Google Scholar 

  50. Takehana, A., Yano, T., Mita, S., Kotani, A., Oshima, Y. and Kurata, S., Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity, EMBO J., 23 (2004) 4690–4700.

    Article  CAS  Google Scholar 

  51. De Gregorio, E., Han, S.J., Lee, W.J., Baek, M.J., Osaki, T., Kawabata, S., Lee, B.L., Iwanaga, S., Lemaitre, B. and Brey, P.T., An immune-responsive Serpin regulates the melanization cascade in Drosophila Dev. Cell, 3 (2002) 581–592.

  52. Gobert, V., Gottar, M., Matskevich, A.A., Rutschmann, S., Royet, J., Belvin, M., Hoffmann, J.A. and Ferrandon, D., Dual activation of the Drosophila toll pathway by two pattern recognition receptors, Science, 302 (2003) 2126–2130.

    Article  CAS  Google Scholar 

  53. Lee, W.J., Lee, J.D., Kravchenko, V.V., Ulevitch, R.J. and Brey, P.T., Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori, Proc. Natl. Acad. Sci. USA, 93 (1996) 7888–7893.

    Article  CAS  Google Scholar 

  54. Bischoff, V., Vignal, C., Boneca, I.G., Michel, T., Hoffmann, J.A. and Royet, J., Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria, Nat. Immunol. 5 (2004) 175–1180.

    Article  Google Scholar 

  55. Schleifer, K.H. and Kandler, O., Peptidoglycan types of bacterial cell walls and their taxonomic implications, Bacteriol. Rev., 36 (1972) 407–477.

    CAS  Google Scholar 

  56. Leulier, F., Parquet, C., Pili-Floury S., Ryu, J.H., Caroff, M., Lee, W.J., Mengin-Lecreulx, D. and Lemaitre, B., The Drosophila immune system detects bacteria through specific peptidoglycan recognition, Nat. Immunol. 4 (2003) 478–484.

    Article  CAS  Google Scholar 

  57. Kaneko, T., Goldman, W. E., Mellroth, P., Steiner, H., Fukase, K., Kusumoto, S., Harley, W., Fox, A., Golenbock, D. and Silverman, N., Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway, Immunity, 20 (2004) 637–649.

    Article  CAS  Google Scholar 

  58. Mellroth, P., Karlsson, J., Hakansson, J., Schultz, N., Goldman, W.E. and Steiner, H., Ligand-induced dimerization of Drosophila peptidoglycan recognition proteins in vitro, Proc. Natl. Acad. Sci. USA, 102 (2005) 6455–6460.

    Article  CAS  Google Scholar 

  59. Stenbak, C.R., Ryu, J.H., Leulier, F., Pili-Floury, S., Parquet, C., Herve, M., Chaput, C., Boneca, I.G., Lee, W.J., Lemaitre, B. and Mengin-Lecreulx, D., Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway, J. Immunol., 173 (2004) 7339–7348.

    CAS  Google Scholar 

  60. Filipe, S.R., Tomasz, A. and Ligoxygakis, P., Requirements of peptidoglycan structure that allow detection by the Drosophila Toll pathway, EMBO Rep., 6 (2005) 327–333.

    Article  CAS  Google Scholar 

  61. Steiner H., Peptidoglycan recognition proteins: on and off switches for innate immunity, Immunol. Rev., 198 (2004) 83–96.

    Article  CAS  Google Scholar 

  62. Watson, F.L., Puttmann-Holgado, R., Thomas, F., Lamar, D.L., Hughes, M., Kondo, M., Rebel, V.I. and Schmucker, D., Extensive diversity of Ig-superfamily proteins in the immune system of insects, Science, 309 (2005) 1874–1878.

    Article  CAS  Google Scholar 

  63. Schmucker, D., Clemens, J.C., Shu, H., Worby, C. A., Xiao, J., Muda, M., Dixon, J.E. and Zipursky, S.L., Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity, Cell, 101 (2000) 671–684.

    Article  CAS  Google Scholar 

  64. Zhan, X.L., Clemens, J.C., Neves, G., Hattori, D., Flanagan, J.J., Hummel, T., Vasconcelos, M.L., Chess, A. and Zipursky, S.L., Analysis of Dscam diversity in regulating axon guidance in Drosophila mushroom bodies, Neuron, 43 (2004) 673–686.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoichiro Kurata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurata, S. Recognition and elimination of diversified pathogens in insect defense systems. Mol Divers 10, 599–605 (2006). https://doi.org/10.1007/s11030-006-9032-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-006-9032-6

Keywords

Navigation