Skip to main content
Log in

Analyzing Toxicity Through Electrophilicity

  • Full-length paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

The toxicological structure-activity relationships are investigated using conceptual DFT based descriptors like global and local electrophilicities. In the present work the usefulness of electrophilicity in predicting toxicity of several polyaromatic hydrocarbons (PAH) is assessed. The toxicity is expressed through biological activity data (pIC50) defined as molar concentration of those chemicals necessary to displace 50% of radiolabeled tetrachlorodibenzo-p-dioxin (TCDD) from the arylhydrocarbon (Ah) receptor. The experimental toxicity values (pIC50) for the electron acceptor toxin like polychlorinated dibenzofurans (PCDF) are taken as dependent variables and the DFT based global descriptor electrophilicity index (ω) is taken as independent variable in the training set. The same model is then tested on a test set of polychlorinated biphenyls (PCB). A good correlation is obtained which vindicates the importance of these descriptors in the QSAR studies on toxins. These toxins act as electron acceptors in the presence of biomolecules whereas aliphatic amines behave as electron donors some of which are also taken into account for the present work. The toxicity values of the aliphatic amines in terms of the 50% inhibitory growth concentration (IGC50) towards ciliate fresh-water protozoa Tetrahymena pyriformis are considered. Since there is no global nucleophilicity we apply local nucleophilicity (ωmax +) as the descriptor in this case of training set. The same regression model is then applied to a test set of amino alcohols. Although the correlation is very good the statistical analysis reflects some cross validation problem. As a further check the amines and amino alcohols are used together to form both the training and the test sets to provide good correlation. It is demonstrated that the toxicity of several toxins (both electron donors and acceptors) in the gas and solution phases can be adequately explained in terms of global and local electrophilicities. Amount of charge transfer between the toxin and the biosystem, simulated as nucleic acid bases and DNA base pairs, indicates the importance of charge transfer in the observed toxicity. The major strength of the present analysis vis-à-vis the existing ones rests on the fact that it requires only one descriptor having a direct relationship with toxicity to provide a better correlation. Importance of using the information from both the toxin and the biosystem is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DFT:

Density Functional Theory

PCDF:

polychlorinated dibenzofuran

PCB:

polychlorinated biphenyl

PCDD:

polychlorinated dibenzo-$p$-dioxin

QSAR:

quantitative structure activity relationship

References

  1. 1. Parr, R.G. and Yang, W., Density Functional Theory of Atoms and Molecules (Oxford University Press: New York) (1989).

    Google Scholar 

  2. 2. Chermette, H., Chemical reactivity indexes in density functional theory, J. Comp. Chem., 20 (1999) 129–154.

    Article  CAS  Google Scholar 

  3. 3. Geerlings, P., De Proft, F. and Langenaeker, W., Conceptual Density Functional Theory, Chem. Rev., 103 (2003) 1793–1874.

    Article  CAS  Google Scholar 

  4. 4. Chattaraj, P.K., Nath, S. and Maiti, B., “Reactivity descriptors” in Computational Medicinal Chemistry and Drug Discovery. Eds., Tollenaere, J., Bultinck, P., Winter, H. D., and Langenaeker, W. (Marcel Dekker: New York), Chapter 11, 2003, pp. 295–322.

    Google Scholar 

  5. 5. Karelson, M., “Quantum-Chemical descriptors in QSARin Computational medicinal chemistry and drug discovery. Eds., Tollenaere, J., Bultinck, P., Winter, H. D., and Langenaeker, W. (Marcel Dekker: New York), Chapter 11, 2004, pp. 641–668.

    Google Scholar 

  6. 6. Parr, R.G., Szentpaly, L.V. and Liu, S., Electrophilicity index, J. Am. Chem. Soc., 121 (1999) 1922–1924.

    Article  CAS  Google Scholar 

  7. 7. Maynard, A.T. and Covell, D.G., Reactivity of Zinc Finger Cores: Analysis of Protein Packing and Electrostatic Screening, J. Am. Chem. Soc., 123 (2001) 1047–1058.

    Article  CAS  Google Scholar 

  8. 8. Chattaraj, P.K., Maiti, B. and Sarkar, U., Philicity: A Unified Treatment of Chemical Reactivity and Selectivity, J. Phys. Chem. A., 107 (2003) 4973–4975.

    Article  CAS  Google Scholar 

  9. 9. Thanikaivelan, P., Subramanian, V., Raghava Rao, J. and Nair, B.U., Application of quantum chemical descriptor in quantitative structure activity and structure property relationship, Chem. Phys. Lett., 323 (2000) 59–70.

    Article  CAS  Google Scholar 

  10. 10. Parthasarathi, R., Subramanian, V., Roy, D.R. and Chattaraj, P.K., Electrophilicity Index as a Possible Descriptor of Biological Activity, Bioorg. Med. Chem., 12 (2004) 5533–5543.

    Article  CAS  Google Scholar 

  11. 11. Parthasarathi, R., Padmanabhan, J., Subramanian, V., Maiti, B. and Chattaraj, P.K., Chemical Reactivity Profiles of Two Selected Polychlorinated Biphenyls, J. Phys. Chem. A., 107 (2003) 10346–10352.

    Article  CAS  Google Scholar 

  12. 12. Parthasarathi, R., Padmanabhan, J., Subramanian, V., Maiti, B. and Chattaraj, P.K., Toxicity analysis of 33'44'5 – Pentachloro Biphenyl Through Chemical Reactivity and Selectivity Profiles, Current Sci., 86 (2004) 535–542. Parthasarathi, R., Padmanabhan, J., Subramanian, V., Sarkar, U., Maiti, B. and Chattaraj, P.K., Toxicity Analysis of Benzidine Through Chemical Reactivity and Selectivity Profiles: A DFT approach, Internet Electron J. Mol. Des., 2 (2003) 798–813.

    CAS  Google Scholar 

  13. 13. Bailey and Love's ‘Short Practice of Surgery’, Russell, R.C.G., Williums, N.S., Bulstrode, C., J.K. (eds.), 23rd Edition (Arnold: London), 2000, pp. 1227–1228.

    Google Scholar 

  14. 14. Walker, M.K. and Peterson, R.E., Potencies of polychlorinated dibenzo-p-dioxin, dibenzofuran, and biphenyl congeners, relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin, for producing early life stage mortality in rainbow trout (Oncorhynchus mykiss), Aquat. Toxicol, 21 (1991) 219–237.

    Article  CAS  Google Scholar 

  15. 15. Zabel, E.W., Cook, P.M. and Peterson, R.E., Toxic equivalency factors of polychlorinated dibenzo-p-dioxin, dibenzofuran and biphenyl congeners based on early life stage mortality in rainbow trout (Oncorhynchus mykiss), Aquat. Toxicol., 31 (1995) 315–328.

    Article  CAS  Google Scholar 

  16. 16. Hutzinger, O., Blumich, M.J., Berg, M.V.D. and Olie, K., Sources and fate of PCDDs and PCDFs: an overview, Chemosphere, 14 (1985) 581–600.

    Article  CAS  Google Scholar 

  17. 17. Olie, K., Vermeulen, P.L. and Hutzinger, O., Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands, Chemosphere, 6 (1977) 455–459.

    Article  CAS  Google Scholar 

  18. 18. Marklund, S., Rappe, C., Tsyklind, M. and Egebäck, K.E., Identification of polychlorinated dibenzofurans and dioxins in exhausts from cars run on leaded gasoline, Chemosphere, 16 (1987) 29–36.

    Article  CAS  Google Scholar 

  19. 19. Lohmann, R. and Jones, K.C., Dioxins and furans in air and deposition: A review of levels, behaviour and processes, Sci. Total Environ., 219 (1998) 53–81.

    Article  CAS  Google Scholar 

  20. 20. Safe, S.H., Polychlorinated biphenyls (PCBs): Environmental impact, biochemical and toxic responses, and implications for risk assessment, Crit. Rev. Toxicol., 24 (1994) 87–149.

    CAS  Google Scholar 

  21. 21. Van den Berg, M., Birnbaum, L., Bosveld, A.T., Brunstrom, B., Cook, P., Feeley, M., Giesy, J.P., Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak, T., Larsen, J.C., van Leeuwen, F.X., Liem, A.K., Nolt, C., Peterson, R.E., Poellinger, L., Safe, S., Schrenk, D., Tillitt, D., Tysklind, M., Younes, M., Waern, F. and Zacharewski, T., Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife, Environ. Health. Perspet., 106 (1998) 775–792.

    Article  Google Scholar 

  22. 22. Oakley, G.G., Devanaboyina, U.S., Robertson, L.W. and Gupta, R.C., Oxidative DNA Damage Induced by Activation of Polychlorinated Biphenyls (PCBs): Implications for PCB-Induced oxidative stress in breast cancer, Chem. Res. Toxicol, 9 (1996) 1285–1292.

    Article  CAS  Google Scholar 

  23. 23. Erickson, M.D., Analytical Chemistry of PCBs (Butterworth Publishers, Boston) (1986).

    Google Scholar 

  24. 24. Silberhorn, E.M., Glauert, H.P. and Robertson, L.W., Carcinogenicity of polyhalogenated biphenyls: PCBs and PBBs, Crit. Rev. Toxicol., 20 (1990) 439–496.

    CAS  Google Scholar 

  25. 25. Miller, G., Sontum, S. and Crosby, D.G., Electron-acceptor properties of chlorinated dibenzo-p-dioxins, Bull. Environ. Contam. Toxicol, 18 (1977) 611–616.

    Article  CAS  Google Scholar 

  26. 26. Poland, A., Palen, D., and Glover, E., Tumour promotion by TCDD in skin of HRS/J hairless mice, Nature, 300 (1982) 271–273.

    Article  CAS  Google Scholar 

  27. 27. Waller, C.L. and McKinney, J.D., Three-dimensional Quantitative Structure-Activity Relationships of Dioxins and Dioxin-like Compounds: Model Validation and Ah Receptor Characterization, Chem. Res. Toxicol. 8 (1995) 847–858.

    Article  CAS  Google Scholar 

  28. 28. Schultz, T.W., Tetratox: Tetrahymena pyriformis population growth impairment endpoint-a surrogate for fish lethality, Toxicol, Methods, 7 (1997) 289–309.

    Article  CAS  Google Scholar 

  29. 29. Pearson, R.G., Chemical hardness – Applications from molecules to solids (VCH-Wiley: Weinheim) (1997).

    Google Scholar 

  30. 30. Parr, R.G., Donnelly, R.A., Levy, M. and Palke, W.E., Electronegativity: The density functional viewpoint, J. Chem. Phys., 68 (1978) 3801–3807.

    Article  CAS  Google Scholar 

  31. 31. Parr, R.G. and Yang, W., Density functional approach to the frontier-electron theory of chemical reactivity, J. Am. Chem. Soc., 106 (1984) 4049.

    Article  CAS  Google Scholar 

  32. Fukui, K., Role of Frontier Orbitalsin Chemical Reactions, Science, 218(1987) 747–754.

  33. 33. Yang, W. and Mortier, W.J., The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines, J. Am. Chem. Soc., 108 (1986) 5708–5711.

    Article  CAS  Google Scholar 

  34. 34. Lee, C., Yang, W. and Parr, R.G., Local softness and chemical reactivity in the molecules CO, SCN - and H 2 CO, J. Mol. Struct. (Theochem), 163 (1988) 305.

    Article  Google Scholar 

  35. 35. Cioslowski, J., Martinov, M. and Mixon, S.T., Atomic Fukui indexes from the topological theory of atoms in molecules applied to Hartree-Fock and correlated electron densities, J. Phys. Chem, 97 (1993) 10948–10951.

    Article  CAS  Google Scholar 

  36. 36. Parr, R.G. and Pearson, R.G., Absolute hardness: Companion parameter to absolute electronegativity, J. Am. Chem. Soc., 105 (1983) 7512–7516.

    Article  CAS  Google Scholar 

  37. 37. Sanderson, R. T., An interpretation of bond lengths and a classification of bonds, Science, 114 (1951) 670.

    Article  CAS  Google Scholar 

  38. 38. Espinosa, A., Frontera, A., García, R., Soler, M.A. and Tárraga, A., Electrophilic behavior of 3-methyl-2-methylthio-1,3,4-thiadiazolium salts: A multimodal theoretical approach, ARKIVOC, (ix) (2005) 415–437.

    Google Scholar 

  39. 39. Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A., 38 (1998) 3098–3100. Hariharan, P. C. and Pople, J. A., Theor. Chim. Acta., 28 (1973) 213.

    Article  Google Scholar 

  40. 40. Lee, C., Yang, W. and Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B., 37 (1988) 785–789.

    Article  CAS  Google Scholar 

  41. 41. Gaussian 03 & Gaussian 98, Revision B.03; Gaussian, Inc.: Pittsburgh, PA.

  42. 42. Mulliken, R. S., Electronic Population Analysis on LCAO–MO Molecular Wave Functions,I$, J. Chem. Phys., 23 (1955) 1833–1840.

    Article  CAS  Google Scholar 

  43. 43. Reed, A.E. and Weinhold, F., Natural bond orbital analysis of near-Hartree-Fock water dimmer, J Chem Phys., 78 (1983) 4066–4073.

    Article  CAS  Google Scholar 

  44. 44. Reed, A.E., Weinstock, R.B. and Weinhold, F., Natural population analysis, J. Chem. Phys., 83 (1985) 735–746.

    Article  CAS  Google Scholar 

  45. 45. Hirshfeld, F.L., Bonded-atom fragments for describing molecular charge densities, Theor. Chim. Acta., 44 (1977) 129–138.

    Article  CAS  Google Scholar 

  46. 46. DMOL3, Accelrys, Inc. San Diego, California.

  47. 47. MATLAB, The Math Works (Inc.: Natick, U.S.A), (1999).

    Google Scholar 

  48. 48. Pecka, J. and Ponec, R., Simple analytical method for evaluation of statistical importance of correlations in QSAR studies, J. Math. Chem., 27 (2000) 13–22.

    Article  CAS  Google Scholar 

  49. 49. Basak, S.C., Chertian, J., Natarajan, R.; Private communication.

  50. 50. Arulmozhiraja, S. and Morita, M., Structure-activity Relationships for the Toxicity of Polychlorinated Dibenzofurans: Approach through Density Functional Theory-Based Descriptors, Chem. Res. Toxicol., 17 (2004) 348–356.

    Article  CAS  Google Scholar 

  51. 51. Tysklind, M., Tillitt, D., Eriksson, L., Lundgren, K. and Rappe, C., A toxic equivalency factor scale for polychlorinated dibenzofurans, Fundam. Appl. Toxicol., 22 (1994) 277–285.

    Article  CAS  Google Scholar 

  52. 52. Roy, D.R., Parthasarathi, R., Maiti, B., Subramanian, V. and Chattaraj, P.K., Electrophilicity as a possible descriptor for toxicity prediction, Bioorg. Med. Chem., 13 (2005) 3405–3412.

    Article  CAS  Google Scholar 

  53. 53. Hawkins, D.M., Basak, S.C. and Mills, D., Assessing model fit by cross–validation, J. Chem. Inf. Comput. Sci., 43 (2003) 579–586.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Chattaraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, D.R., Sarkar, U., Chattaraj, P.K. et al. Analyzing Toxicity Through Electrophilicity. Mol Divers 10, 119–131 (2006). https://doi.org/10.1007/s11030-005-9009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-005-9009-x

Keywords

Navigation