Skip to main content
Log in

A Novel RBF Neural Network Training Methodology to Predict Toxicity to Vibrio Fischeri

  • Full-length paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

This work introduces a neural network methodology for developing QSTR predictors of toxicity to Vibrio fischeri. The method adopts the Radial Basis Function (RBF) architecture and the fuzzy means training strategy, which is fast and repetitive, in contrast to most traditional training techniques. The data set that was utilized consisted of 39 organic compounds and their corresponding toxicity values to Vibrio fischeri, while lipophilicity, equalized electronegativity and one topological index were used to provide input information to the models. The performance and predictive ability of the RBF model were illustrated through external validation and various statistical tests. The proposed methodology can be used to successfully model toxicity to Vibrio fischerifor a heterogeneous set of compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, F.C. and Kacew, S., LU'S BASIC TOXICOLOGY, Taylor & Francis, London, 2002.

    Google Scholar 

  2. Parvez, S., Venkataraman, C. and Mukherji, S., A review on advantages of implementing luminescence inhibition (Vibrio fischeri) for acute toxicity prediction of chemicals, Environ. Int., 32 (2006) 265–268.

    Article  CAS  Google Scholar 

  3. Dawson, D.A., Poch, G. and Schultz, T.W., Chemical mixture toxicity testing with Vibrio fischeri: Combined effects of binary mixtures for ten soft electrophiles Ecotox. Environ. Safety (2005) In press.

  4. Karcher, W. and Devillers, J., SAR and QSAR in environmental chemistry and toxicology: Scientific tool or wishful thinking? In: Karcher, W. and Devillers, J. (Eds.). Practical applications of Quantitative Structure-Activity Relationships (QSAR) in environmental chemistry and toxicology. Kluwer, Dordrecht, The Netherlands, 1990, pp 1–12.

  5. Nendza, M., Structure-Activity Relationships in Environmental Sciences, Ecotoxicology Series 6, CHAPMAN & HALL, Great Britain, 1998.

  6. Schultz, T.W., Netzeva, T.I. and Cronin, M.T.D., Selection of data sets for QSARs: Analyses of Tetrahymena Toxicity from aromatic compounds, SAR QSAR Environ. Res., 14 (2003) 59–81.

  7. Netzeva, T.I., Schultz, T.W., Aptula, A.O. and Cronin, M.T.D. Partial least squares modelling of the acute toxicity of aliphatic compounds to tetrahymena pyriformis, SAR QSAR Environ. Res., 14 (2003) 265–283.

    Article  CAS  Google Scholar 

  8. Warne, M.A., Osborn, D., Lindon, J.C. and Nicholson, J.K., Quantitative Structure-Activity Relationships for halogenated substituted-benzenes to Vibrio fischeri, using atom-based semi-empirical molecular-orbital descriptors, Chemospere, 38 (1999) 3357–3382.

  9. Khadikar, P.V., Mather, K.C., Singh, S., Phadnis, A., Shrivastava, A. and Mandoloi, M., Study on quantitative structure-toxicity relationships of benzene derivatives acting by narcosis, Bioorg. Med. Chem., 10 (2002) 1761–1766.

    Article  CAS  Google Scholar 

  10. Roy, K. and Ghosh, G., QSTR with extended topochemical indices. Part 5: Modeling of the acute toxicity of phenylsulfonyl carboxylates to Vibrio fischeri using genetic fuction approximation, Bioorg. Med. Chem., 13 (2005) 1185–1194.

    Article  CAS  Google Scholar 

  11. Roy, K. and Ghosh, G., QSTR with extended topochemical atom indices. 4. Modeling of the acute toxicity of phenylsulfonyl carboxylates to Vibrio fischeri using principal component factor analysis and principal component regression analysis, QSAR Comb. Sci., 23 (2004) 526–535.

    Article  CAS  Google Scholar 

  12. Melagraki, G., Afantitis, A., Sarimveis, H., Igglessi-Markopoulou, O. and Supuran, C.T., QSAR study on para-substituted aromatic sulfonamides as carbonic anhydrase II inhibitors using topological information indices, Bioorg. Med. Chem., 14 (2006) 1108–1114.

    Article  CAS  Google Scholar 

  13. Afantitis, A., Melagraki, G., Sarimveis, H., Koutentis, P. A., Markopoulos, J. and Igglessi-Markopoulou, O., A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis, Mol. Diversity, In press (2005).

  14. Hansch, C. and Leo, A., Exploring QSAR: Fundamentals and Applications in Chemistry and Biology. ACS, Washington, DC, 1995.

  15. Debnath, A.K., Quantitative structure – activity relationship (QSAR): A versatile tool in drug design, In: Ghose, A.K. and Viswanadhan, V.N. (Eds.) Combinatorial library design and evaluation: Principles, software tools, and applications in drug discovery, Marcel Dekker, New York, 2001, pp 73–129.

  16. Devillers, J., Neural, Networks in QSAR and Drug Design. Academic Press, London, 1996.

    Google Scholar 

  17. Kaiser, K.L.E., Neural Networks for effect prediction in environmental and health issues using large datasets, Quant. Struct.-Act. Relat., 22 (2003) 185–190.

    CAS  Google Scholar 

  18. Kaiser, K.L.E., The use of neural networks in QSARs for aquatic toxicological endpoints, J. Mol. Str. (Theochem), 622 (2003) 85–95.

    Article  CAS  Google Scholar 

  19. Afantitis, A., Melagraki, G., Makridima, K., Alexandridis, A., Sarimveis, H. and Igglessi-Markopoulou, O., Prediction of high-weight polymers glass transition temperature using RBF neural networks, J. Mol. Str. (Theochem), 716 (2005) 193–198.

    Article  CAS  Google Scholar 

  20. Melagraki, G., Afantitis, A., Makridima, K., Sarimveis, H. and Igglessi-Markopoulou, O., Prediction of toxicity using a novel RBF neural network training methodology. J. Mol. Model., In press (2005).

  21. Sarimveis, H., Alexandridis. A., Tsekouras G. and Bafas G., A Fast and efficient algorithm for training radial basis function neural networks based on a fuzzy partition of the input space, Ind. Eng. Chem. Res., 41 (2002) 751–759.

    Article  CAS  Google Scholar 

  22. Agrawal, V.K. and Khadikar, P.V., QSAR Study on narcotic mechanism of action and toxicity: A molecular connectivity approach to Vibrio fischeri toxicity testing, Bioorg. Med. Chem., 10 (2002) 3517– 3522.

  23. Zhao, Y.H., Cronin, M.T.D. and Dearden, J.C., Quantitative structure-activity relationships of chemicals acting by non-polar narcosis-theoretical considerations, Quant. Struct.-Act. Relatsh., 17 (1998) 131–138.

    Article  CAS  Google Scholar 

  24. Todeschini, R. and Consonni, V., Handbook of Molecular Descriptors, Methods and Principles in Medicinal Chemistry, in Series of Methods and Principles of Medicinal Chemistry Vol. 11. Wiley-VCH: Weinheim, Germany, 2000.

  25. Hall, L.H. and Kier, L.B., Issues in representation of molecular structure. The development of molecular connectivity, J. Mol. Graph. Model., 20 (2001) 4–18.

    Article  CAS  Google Scholar 

  26. Newsome, L.D., Johnson, D.E., Lipnick, R.L., Broderius, S.J. and Russom, C.L., A QSAR study of the toxicity of amines to the fathead minnow, Sci. Total Environ., 109 (1991) 537–551.

    Article  Google Scholar 

  27. Khadikar, P.V., Lukovits, I, Agrawal, V.K., Shrivastava, S., Jaiswal, M., Gutman, I., Karmarkar, S. and Shrivastava, A., Equalized electronegativity and topological indices: Application for modeling toxicity of nitrobenzene derivatives. Indian J. Chem., 42A (2003) 1436– 1441.

  28. Zhao, Y.H., Ji, G.D., Cronin, M.T.D. and Dearden, J.C., QSAR study of the toxicity of benzoic acids to Vibrio fischeri, Daphnia magna and carp, Sci. Total Environ., 216 (1998) 205–215.

    Article  CAS  Google Scholar 

  29. Cronin, M.T.D. and Schultz, T.W., Structure –toxicity relationships for three mechanisms of action of toxicity to Vibrio fischeri, Ecotox. Environ. Safety, 39 (1998) 65–69.

    Article  CAS  Google Scholar 

  30. Darken, C. and Moody, J., Fast adaptive K-means clustering: Some empirical results. IEEE INNS International Joint Conference On Neural Networks, San Diego, CA, USA, June 17–21, 1990, Proceedings Vol. 2, 1990, 233 – 238.

  31. Dunn, J.C., A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, J. Cybernet., 3 (1974) 32–57.

    Google Scholar 

  32. Leonard, J.A. and Kramer, M.A., Radial basis function networks for classifying process faults, IEEE Control Systems. 11 (1991) 31– 38.

    Google Scholar 

  33. Osten, D.W., Selection of oprimal regression models via cross-validation J. Chemom., 2 (1988) 39–48.

    Article  Google Scholar 

  34. Tropsha, A., Gramatica, P. and Gombar, V.K., The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. Quant. Comb. Sci., 22 (2003) 69–77.

    Article  CAS  Google Scholar 

  35. Golbraikh, A. and Tropsha, A., Beware of q 2!. J. Mol. Graph. Model., 20 (2002) 269–276.

    Article  CAS  Google Scholar 

  36. Golbraikh, A. and Tropsha, A., Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Mol. Diversity, 5 (2000) 231–243.

    Article  CAS  Google Scholar 

  37. Wold, S. and Eriksson, L., Statistical validation of QSAR results, in: Van de Waterbeemd, H., (Ed.), Chemometrics Methods in Molecular Design, VCH Weinheim (Germany) 1995, pp. 309–318.

  38. Sarimveis, H., Training algorithms and learning abilities of three different types of neural networks, Syst. Anal. Model. Simul., 38 (2000) 555–581.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haralambos Sarimveis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melagraki, G., Afantitis, A., Sarimveis, H. et al. A Novel RBF Neural Network Training Methodology to Predict Toxicity to Vibrio Fischeri. Mol Divers 10, 213–221 (2006). https://doi.org/10.1007/s11030-005-9008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-005-9008-y

Keywords

Navigation