Skip to main content
Log in

Prediction of genotoxicity of various environmental pollutants by artificial neural network simulation

  • Full-length paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

In order to evaluate human carcinogenic risks, genotoxicity data such as animal cancer bioassay are often not available. In this study, to assess the relevance of indicator of carcinogenic risks, we used the “molecular diversity approach” to estimate the genotoxicity based upon Salmonella genotoxicity test using the umu test and systemic toxicity data of the 82 environmental chemicals predicted by neural network simulation. The 82 environmental chemicals were randomly selected for this study according to the production and usage in Japan. Even in this challenging trial for QSTR (Quantitative Structure Toxicity Relationship) study, approaches using artificial neural networks can account for about 94% of the variation in the genotoxicity results derived by the umu-test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shoji, R., Sakoda, A., Sakai, Y. and Suzuki, M., Hazard assessment of micropollutants and endocrine disruptors – preservation of human cell bioassay device for the on-site evaluation of environmental waters, Wat. Sci. Technol., 46 (2002) 355–362.

    CAS  Google Scholar 

  2. Shoji, R., Current computer-aided drug design, The potential performance of artificial neural networks in QSTRs for predicting ecotoxicity of environmental pollutants, 2 (2004) 563–569.

  3. Kawakami, M., Nanri, T. and Shoji, R.J., Estimation of cytotoxicity of organic chemicals by quantitative structure activity relationships (QSARs) based on a neural network adaptation, Ecotechnol. Res., 10 (2004) 119–124.

    Google Scholar 

  4. Shoji, R., Miyazaki, T. and Nishimiya, T., Estimation of cytotoxicity to HEP-G2 cells of 255 kinds of environmental pollutants and landfill leachate using QSAR (Quantitative structure activity relationship), J. Environ. Sci. Health, A38 (2003) 2807–2823.

    Article  CAS  Google Scholar 

  5. Enslein, K. and Gombar, U.K., TOPKAT 5.0 and modulation of toxicity, Mut. Res., 379 (1997) 514–519.

    Google Scholar 

  6. Klopman, G., Stefan L.R. and Saiakhov, R.D., ADME evaluation 2: A computer model for the prediction of intestinal absorption in humans, Euro. J. Pharm. Sci., 17 (2002) 253–258.

    Article  CAS  Google Scholar 

  7. Lewis, D.F.V., On the recognition of mammalian microsomal cytochrome P450 substrates and their characteristics: Towards the prediction of human p450 substrate specificity and metabolism, Biochem. Pharmacol., 60 (2000) 293–296.

    Article  CAS  Google Scholar 

  8. Moriguchi, I., Hirano, H. and Hirano, S., Prediction of the rodent carcinogenicity of organic compounds from their chemical structures using the FALS method, Environ. Health Perspect., 104 (1996) 1051–1060.

    Article  CAS  Google Scholar 

  9. Kaiser, K.L.E., Dearden, J.C., Klein, W. and Schultz, T.W., Note of caution to users of ECOSAR, Water Qual. Res. J. Can., 34 (1999) 1–6.

    CAS  Google Scholar 

  10. Little, J.W. and Mount, D.W., The SOS regulatory system of Escherichia coli, Cell, 29 (1982) 11–22.

    Article  CAS  Google Scholar 

  11. Oda, Y., Nakamura, S., Ise, T., Makino, K. and Nakata, A., Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens, Mut. Res., 23 (1985) 219–229.

    Google Scholar 

  12. Reifferscheid, G., Heil, J., Oda, Y. and Zahn, R. K., A microplatge version of the SOS/umu-test for rapid detection of genotoxins and genotoxic potentials of environmental samples, Mutat. Res., 253 (1991) 215–222.

    CAS  Google Scholar 

  13. Justus, T. and Thomas, S.M., Construction of a umuC'-luxAB plasmid for the detection of mutagenic DNA repair via luminescence, Mutat. Res., 398 (1998) 131–141.

    CAS  Google Scholar 

  14. Cupples, C.G., Miller, J.H. and Huber, R.E.J., Determination of the roles of Glu-461 in β-galactosidase (Escherichia coli) using site-specific mutagenesis, Biol. Chem., 265 (1990) 5512–5518.

    CAS  Google Scholar 

  15. Oda, Y., Yamazaki, H., Watanabe, M., Nohmi, T. and Shimada, T., Highly sensitive umu test system fot the detection of mutagenic nitroarenes in Salmonella typhimurium NM3009 having high O-acetyltransferase and nitroreductase activities, Environ. Mol. Mutagen., 21 (1993) 297–302.

    Article  Google Scholar 

  16. Turner, J.V., Maddalena, D.J. and Cutler, D.J., Pharmacokinetic parameter prediction from drug structure using artificial neural networks, Int. J. Pharmaceutics, 36 (2004) 17.

    Google Scholar 

  17. Hawkins, D.M., Basak, S.C. and Mills, D., QSARs for chemical mutagens from structure: ridge regression fitting and diagnostics, Environ. Toxicol. Pharmacol., 16 (2004) 37–44.

    Article  CAS  Google Scholar 

  18. Garg, A., Bhat, K.L. and Bock, C.W., Mutagenicity of aminoazobenzene dyes and related structures: A QSAR/QPAR investigation, Dyes Pigments, 55 (2002) 35–52.

    Article  CAS  Google Scholar 

  19. Gonzalez-Mancebo, S., Gaspar, J., Calle, E., Pereira, S., Mariano, A., Rueff, J. and Casado, J., Stereochemical effects in the metabolic activation of nitrosopiperidines: Correlations with genotoxicity, Mut. Res., 558 (2004) 45–51.

    CAS  Google Scholar 

  20. Barratt, M.D. and Rodford, R.A., The computational prediction of toxicity, Curr. Opt. Chem. Biol., 5 (2001) 383–388.

    Article  CAS  Google Scholar 

  21. Sztandera, L., Garg, A., Hayik, S., Bhat, K.L. and Bock, C.W., Mutagenicity of aminoazo dyes and their reductive-cleavage metabolites: A QSAR/QPAR investigation, Dyes Pigments, 59 (2003) 117–133.

    Article  CAS  Google Scholar 

  22. Taguchi, K., Tanaka, Y., Imaeda, T., Hirai, M., Mohri, S., Yamada, M. and Inoue, Y., Development of a genotoxicity detection system using a biosensor, Environ. Sci., 11 (2004) 293–302.

    CAS  Google Scholar 

  23. Rosenkranz, H.S., Synergy between systemic toxicity and genotoxicity: Relevance to human cancer risk, Mut. Res. 529 (2003) 117–127.

    CAS  Google Scholar 

  24. White, A.C., Mueller, R.A., Gallavan, R.H., Aaron, S. and Wilson, A.G.E., A multiple in silico program approach for the prediction of mutagenicity from chemical structure, Mut. Res. 593 (2003) 77–89.

    Google Scholar 

  25. Cash, G.G., Prediction of the genotoxicity of aromatic and heteroaromatic amines using electrotopological state indices, Mut. Res., 491 (2001) 31–37.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Shoji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoji, R., Kawakami, M. Prediction of genotoxicity of various environmental pollutants by artificial neural network simulation. Mol Divers 10, 101–108 (2006). https://doi.org/10.1007/s11030-005-9005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-005-9005-1

Keywords

Navigation