Skip to main content
Log in

Modeling the bioconcentration factors and bioaccumulation factors of polychlorinated biphenyls with posetic quantitative super-structure/activity relationships (QSSAR)

  • Full-length paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

During bioconcentration, chemical pollutants from water are absorbed by aquatic animals via the skin or a respiratory surface, while the entry routes of chemicals during bioaccumulation are both directly from the environment (skin or a respiratory surface) and indirectly from food. The bioconcentration factor (BCF) and the bioaccumulation factor (BAF) for a particular chemical compound are defined as the ratio of the concentration of a chemical inside an organism to the concentration in the surrounding environment. Because the experimental determination of BAF and BCF is time-consuming and expensive, it is efficacious to develop models to provide reliable activity predictions for a large number of chemical compounds. Polychlorinated biphenyls (PCBs) released from industrial activities are persistent pollutants of the environment that produce widespread contamination of water and soil. PCBs can bioaccumulate in the food chain, constituting a potential source of exposure for the general population. To predict the bioconcentration and bioaccumulation factors for PCBs we make use of the biphenyl substitution-reaction network for the sequential substitution of H-atoms by Cl-atoms. Each PCB structure then occurs as a node of this reaction network, which is some sort of super-structure, turning out mathematically to be a partially ordered set (poset). Rather than dealing with the molecular structure via ordinary QSAR we use only this poset, making different quantitative super-structure/activity relationships (QSSAR). Thence we developed cluster expansion and splinoid QSSARs for PCB bioconcentration and bioaccumulation factors. The predictive ability of the BAF and BCF models generated for 20 data sets (representing different conditions and fish species) was evaluated with the leave-one-out cross-validation, which shows that the splinoid QSSAR (r between 0.903 and 0.935) are better than models computed with the cluster expansion (r between 0.745 and 0.887). The splinoid QSSAR models for BAF and BCF yield predictions for the missing PCBs in the investigated data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schüürmann, G. and Klein, W., Advances in bioconcentration prediction, Chemosphere, 17 (1988) 1551–1574.

    Article  Google Scholar 

  2. Feijtel, T., Kloepper-Sams, P., Den Haan, K., Van Egmond, R., Comber, M., Heusel, R., Wierich, P., Ten Berge, W., Gard, A., Wolf, W. and Niessen, H., Integration of bioaccumulation in an environmental risk assessment, Chemosphere, 34 (1997) 2337–2350.

    Article  CAS  Google Scholar 

  3. Franke, C., Studinger, G., Berger, G., Böhling, S., Bruckmann, U., Cohors-Fresenborg, D. and Jöhncke, U., The assessment of bioaccumulation, Chemosphere, 29 (1994) 1501–1514.

    Article  CAS  Google Scholar 

  4. Turne, L., Choplin, F., Dugard, P., Hermens, J., Jaeckh, R., Marsmann, M. and Roberts, D., Structure-activity relationships in toxicology and ecotoxicology: An assessment, Toxicol. in vitro, 1 (1987) 143– 171.

    Article  Google Scholar 

  5. Carlsen, L. and Walker, J.D., QSARs for prioritizing PBT substances to promote pollution prevention, QSAR Comb. Sci., 22 (2003) 49– 57.

    Article  CAS  Google Scholar 

  6. Swanson, G.M., Ratcliffe, H.E. and Fischer, L.J., Human exposure to policlorinated biphenyls (PCBs): A critical assessment of the evidence for adverse health effects, Regul. Toxicol. Pharmacol., 21 (1995) 136–150.

    Article  PubMed  CAS  Google Scholar 

  7. Faroon, O., Jones, D. and De Rosa, C., Effects of polychlorinated biphenyls on the nervous system, Toxicol. Ind. Health, 16 (2000) 305–333.

    Article  CAS  Google Scholar 

  8. Kamrin, M.A. and Fischer, L.J., Current status of sport fish consumption advisories for PCBs in the Great Lakes, Regul. Toxicol. Pharmacol., 29 (1999) 175–181.

    Article  PubMed  CAS  Google Scholar 

  9. Judd, N., Griffith, W.C. and Faustman, E.M., Contribution of PCB exposure from fish consumption to total dioxin-like dietary exposure, Regul. Toxicol. Pharmacol., 40 (2004) 125–135.

    Article  PubMed  CAS  Google Scholar 

  10. Ivanciuc, O., Support vector machines prediction of the mechanism of toxic action from hydrophobicity and experimental toxicity against pimephales promelas and tetrahymena pyriformis, Internet Electron. J. Mol. Des., 3 (2004) 800–821, http://www.biochempress.com.

  11. Carlsen, L., A QSAR approach to physico–chemical data for organophosphates with special focus on known and potential nerve agents, Internet Electron. J. Mol. Des., 4 (2005) 355–366, http://www.biochempress.com.

  12. Seegal, R.F. and Bowers, W.J., Consequences and mechanisms of action of fish-borne toxicants: what we do not know and why, Environ. Toxicol. Pharmacol., 12 (2002) 63–68.

    Article  CAS  Google Scholar 

  13. Mackay, D. and Fraser, A., Bioaccumulation of persistent organic chemicals: mechanisms and models, Environ. Pollut., 110 (2000) 375–391.

    Article  PubMed  CAS  Google Scholar 

  14. Hope, B., Scatolini, S. and Titus, E., Bioconcentration of chlorinated biphenyls in biota from the North Pacific Ocean, Chemosphere, 36 (1998) 1247–1261.

    Article  PubMed  CAS  Google Scholar 

  15. Voutsas, E., Magoulas, K. and Tassios, D., Prediction of the bioaccumulation of persistent organic pollutants in aquatic food webs, Chemosphere, 48 (2002) 645–651.

    Article  PubMed  CAS  Google Scholar 

  16. Meylan, W.M., Howard, P.H., Boethling, R.S., Aronson, D. Printup, H. and Gouchie, S., Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient, Environ. Toxicol. Chem., 18 (1999) 664–672.

    Article  CAS  Google Scholar 

  17. Ivanciuc, O., Aquatic Toxicity Prediction for Polar and Nonpolar Narcotic Pollutants with Support Vector Machines, Internet Electron. J. Mol. Des., 2 (2003) 195–208, http://www.biochempress.com.

  18. Hansch, C. and Leo, A., Exploring QSAR. Fundamentals and applications in chemistry and biology, American Chemical Society, Washington, DC, 1995, pp 580.

  19. Gramatica, P. and Papa, E., QSAR modeling of bioconcentration factor by theoretical molecular descriptors, QSAR Comb. Sci., 22 (2003) 374–385.

    Article  CAS  Google Scholar 

  20. Devillers, J., Domine, D., Bintein, S. and Karcher, W., Fish bioconcentration modeling with log P, Toxicol. Methods, 8 (1998) 1–10.

    Article  CAS  Google Scholar 

  21. Dearden, J.C. and Shinnawei, N.M., Improved prediction of fish bioconcentration factor of hydrophobic chemicals, SAR QSAR Environ. Res., 15 (2004) 449–455.

    Article  PubMed  CAS  Google Scholar 

  22. Hu, H., Xu, F., Li, B., Cao, J., Dawson, R. and Tao, S., Prediction of the bioconcentration factor of PCBs in fish using the molecular connectivity index and fragment constant models, Water Environ. Res., 77 (2005) 136–150.

    Article  Google Scholar 

  23. Davies, R.P. and Donas, A.J., The prediction of bioconcentration in fish, Water Res., 18 (1984) 1253–1262.

    Article  CAS  Google Scholar 

  24. Fatemi, M.H., Jalali-Heravi, M. and Konuze, E., Prediction of bioconcentration factor using genetic algorithm and artificial neural network, Anal. Chim. Acta, 486 (2003) 101–108.

    Article  CAS  Google Scholar 

  25. Boon, J.P. and Duinker, J.C., Kinetics of polychlorinated biphenyl (PCB) components in juvenile sole (solea solea) in relation to concentrations in water and to lipid metabolism under conditions of starvation, Aquat. Toxicol., 7 (1985) 119–134.

    Article  CAS  Google Scholar 

  26. Renberg, L. and Sundström, G., Prediction of bioconcentration potential of organic compounds using partition coefficients derived from reversed phase thin layer chromatography, Chemosphere, 7 (1979) 449–459.

    Article  Google Scholar 

  27. Harald, J., Geyer, I., Scheunert, I. and Korte, F., Correlation between the bioconcentration potential of organic environmental chemicals in humans and their n-octanol/water partition coefficients, Chemosphere, 16 (1987) 239–252.

    Article  Google Scholar 

  28. Tao, S., Hu, H., Lu, X., Dawson, R.W. and Xu, F., Fragment constant method for prediction of fish bioconcentration factors of non-polar chemicals, Chemosphere, 41 (2000) 1563–1568.

    Article  PubMed  CAS  Google Scholar 

  29. Ivanciuc, O., Artificial neural networks applications. Part 7 - Estimation of bioconcentration factors in fish using solvatochromic parameters, Rev. Roum. Chim., 43 (1998) 347–354.

    CAS  Google Scholar 

  30. Dimitrov, S.D., Dimitrova, N.C., Walker, J.D., Veith, G.D. and Mekenyan, O.G., Predicting bioconcentration factors of highly hydrophobic chemicals. Effects of molecular size, Pure Appl. Chem., 74 (2002) 1823–1830.

    Article  CAS  Google Scholar 

  31. Dimitrov, S.D., Dimitrova, N.C., Walker, J.D., Veith, G.D. and Mekenyan, O.G., Bioconcentration potential predictions based on molecular attributes – an early warning approach for chemicals found in humans, birds, fish and wildlife, QSAR Comb. Sci., 22 (2003) 58–68.

    Article  CAS  Google Scholar 

  32. Gobas, F.A.P.C., A model for predicting the bioaccumulation of hydrophobic organic chemicals in aquatic food-webs: Application to Lake Ontario, Ecol. Model., 69 (1993) 1–17.

    Article  CAS  Google Scholar 

  33. Boon, J.P., Oostingh, I., Van der Meer, J., and Hillebrand, T.M.J., A model for the bioaccumulation of chlorobiphenyl congeners in marine mammals, Eur. J. Pharmacol., Environ. Toxicol. Pharmacol., 270 (1994) 237–251.

    Article  CAS  Google Scholar 

  34. Walker, C.H., Kinetic models for predicting bioaccumulation of pollutants in ecosystems, Environ. Pollut., 44 (1987) 227–240.

    Article  PubMed  CAS  Google Scholar 

  35. Müller, J.F., Hawker, D.W. and Connell, D.W., Calculation of bioconcentration factors of persistent hydrophobic compounds in the airnegetation system, Chemosphere, 29 (1994) 623–640.

    Article  Google Scholar 

  36. Ivanciuc, O., Bioconcentration factor QSAR with support vector regression and artificial neural networks, Internet Electron. J. Mol. Des., 4 (2005) 000–000, http://www.biochempress.com.

  37. Bruggeman, W.A., Martron, L.B.J.M., Kooiman, D. and Hutzinger, O., Accumulation and elimination of di-, tri-, and tetrachlorobiphenyls by goldfish after dietary and aqueous exposure, Chemosphere, 10 (1981) 811–832.

    Article  CAS  Google Scholar 

  38. Ivanciuc, O., Support vector machine identification of the aquatic toxicity mechanism of organic compounds, Internet Electron. J. Mol. Des., 1 (2002) 157–172, http://www.biochempress.com.

  39. Echols, K.R., Gale, R.W., Schwartz, T.R., Huckins, J.N., Williams, L.L.,Meadows, J.C., Morse, D.,Petty, J.D., Orazio, C.E. and Tillitt, D.E., Comparing polychlorinated biphenyl concentrations and patterns in the Saginaw River using sediment caged fish, and semipermeable membrane devices, Environ. Sci. Technol., 34 (2000) 4095–4102.

    Article  CAS  Google Scholar 

  40. Geyer, H.J., Scheunert, I., Bruggemann, R., Steinberg, C., Korte, F. and Kettrup, A., QSAR for organic chemical bioconcentration in Daphnia, algae, and mussels, Sci. Total. Environ., 109/110 (1991) 387– 394.

    Article  Google Scholar 

  41. Devillers, J., Bintein, S. and Domine, D., Comparison of BCF models based on log P, Chemosphere, 33 (1996) 1047–1065.

    Article  CAS  Google Scholar 

  42. Wei, D., Zhang, A., Wu, C., Han, S. and Wang, L., Progressive study and robustness test of QSAR model based on quantum chemical parameters for predicting BCF of selected polychlorinated organic compound (PCOCs), Chemosphere, 44 (2001) 1421–1428.

    Article  PubMed  CAS  Google Scholar 

  43. Saçan, M.T., Erdem, S.S., Özpinar, G.A. and Balcioglu, I.A., QSPR study on the bioconcentration factors of nonionic organic compounds in fish by characteristic root index and semiempirical molecular descriptors, J. Chem. Inf. Comput. Sci., 44 (2004) 985–992.

    Article  PubMed  CAS  Google Scholar 

  44. Lu, X., Tao, S., Cao, J. and Dawson, R.W., Prediction of fish bioconcentration factors of nonpolar organic pollutants based on molecular connectivity indices, Chemosphere, 39 (1999) 987–999.

    Article  PubMed  CAS  Google Scholar 

  45. Lu, X., Tao, S., Hu, H. and Dawson, R.W., Estimation of bioconcentration factors of nonionic organic compounds in fish by molecular connectivity indices and polarity correction factors, Chemosphere, 41 (2000) 1675–1688.

    Article  PubMed  CAS  Google Scholar 

  46. Fox, K., Zauke, G.P. and Butte, W., Kinetics of bioconcentration and clearance of 28 polychlorinated biphenyl congeners in Zebrafish (Brachydanio rerio), Ecotox. Environ. Safety, 28 (1994) 99–109.

    Article  CAS  Google Scholar 

  47. Burkhard, L.P., Endicott, D.D., Cook, P.M., Sappington, K.G. and Winchester, E.L., Evaluation of two methods for prediction of bioaccumulation factors, Environ. Sci. Technol., 37 (2003) 4626–4634.

    Article  PubMed  CAS  Google Scholar 

  48. Klein, D.J., Similarity and dissimilarity in posets. J. Math. Chem., 18 (1995) 321–348.

    Article  CAS  Google Scholar 

  49. Klein, D.J. and Babić, D., Partial orderings in chemistry, J. Chem. Inf. Comput. Sci., 37 (1997) 656–671.

    Article  CAS  Google Scholar 

  50. Klein, D.J., Prolegomenon on partial orderings in Chemistry, MATCH Commun. Math. Comput. Chem., 42 (2000) 7–21.

    CAS  Google Scholar 

  51. Klein, D.J. and Bytautas, L., Directed reaction graphs as posets, MATCH Commun. Math. Comput. Chem., 42 (2000) 261–289.

    CAS  Google Scholar 

  52. Brüggemann, R., Schwaiger, J. and Negele, R.D., Applying Hasse diagram technique for the evaluation of toxicological fish tests, Chemosphere, 30 (1995) 1767–1780.

    Article  Google Scholar 

  53. Brüggemann, R. and Bartel, H.G., A theoretical concept to rank environmentally significant chemicals, J. Chem. Inf. Comput. Sci., 39 (1999) 211–217.

    Article  Google Scholar 

  54. Pudenz, S., Brüggemann, R., Luther, B., Kaune, A. and Kreimes K., An algebraic/graphical tool to compare ecosystems with respect to their pollution V: Cluster analysis and Hasse diagrams, Chemosphere, 40 (2000) 1373–1382.

    Article  PubMed  CAS  Google Scholar 

  55. Brüggemann, R., Pundez, S., Carlsen, L., Sørensen, P.B., Thomsen, M. and Mishra, R.K., The use of Hasse diagrams as a potential approach for inverse QSAR, SAR QSAR Environ. Res., 11 (2001) 473– 487.

    Article  PubMed  Google Scholar 

  56. Carlsen, L., Sørensen, P.B., Thomsen, M. and Brüggemann R., QSAR's based on partial order ranking, SAR QSAR Environ. Res., 13 (2002) 153–165.

    Article  PubMed  CAS  Google Scholar 

  57. Brüggemann, R., Münzer, B. and Halfon, E., An algebraic/graphical tool to compare ecosystems with respect to their pollution – the German river “Elbe” as an example - I: Hasse-diagrams, Chemosphere, 28 (1994) 863–872.

    Article  Google Scholar 

  58. Lerche, D., Sørensen, P.B., Larsen H.L., Carlsen, L. and Nielsen, O.J., Comparison of the combined monitoring-based and modelling-based priority setting scheme with partial order theory and random linear extensions for ranking of chemical substances, Chemosphere, 49 (2002) 637–649.

    Article  PubMed  CAS  Google Scholar 

  59. Lerche, D. and Sørensen, P.B., Evaluation of the ranking probabilities for partial orders based on random linear extensions, Chemosphere, 53 (2003) 981–992.

    Article  PubMed  CAS  Google Scholar 

  60. Lerche, D., Matsuzaki, S.Y., Sørensen, P.B., Carlsen, L. and Nielsen, O.J., Ranking of chemical substances based on the Japanese pollutant release and transfer register using partial order theory and random linear extensions, Chemosphere, 55 (2004) 1005–1025.

    Article  PubMed  CAS  Google Scholar 

  61. Sørensen, P.B., Mogensen, B.B., Carlsen, L. and Thomsen, M., The influence on partial order ranking from input parameter uncertainty: Definition of a robustness parameter, Chemosphere, 41 (2000) 595–601.

    Article  PubMed  Google Scholar 

  62. Klein, D.J., Schmalz, T.G. and Bytautas, L., Chemical sub-structural cluster expansions for molecular properties, SAR QSAR Environ. Res., 10 (1999) 131–156.

    Article  CAS  Google Scholar 

  63. Ivanciuc, T. and Klein D.J., Parameter-free structure-property correlation via progressive reaction posets for substituted benzenes, J. Chem. Inf. Comput. Sci., 44 (2004) 610–617.

    Article  PubMed  CAS  Google Scholar 

  64. Ivanciuc, T., Ivanciuc, O. and Klein, D.J., Posetic quantitative superstructure/activity relationships (QSSARs) for chlorobenzenes, J. Chem. Inf. Model., 45 (2005) 870–879.

    Article  PubMed  CAS  Google Scholar 

  65. Došlić, T. and Klein, D.J., Splinoid interpolation on finite posets, J. Comput. Appl. Math., 177 (2005) 175–185.

    Article  Google Scholar 

  66. Klein, D.J., Chemical graph-theoretic cluster expansions, Int. J. Quantum. Chem., Quantum Chem. Symp., 20 (1986) 153–171.

    Article  CAS  Google Scholar 

  67. Schmalz, T.G., Živković, T. and Klein, D.J., Cluster expansion of the Hückel molecular energy for acyclics: Applications to pi resonance theory, Math. Chem. Comp., 54 (1987) 173–190.

    CAS  Google Scholar 

  68. Ivanciuc, T., Klein, D.J. and Ivanciuc, O., Posetic cluster expansion for substitution – reaction diagrams and its application to cyclobutane, J. Math. Chem. (submitted).

  69. Gillet, V.J., Willett, P. and Bradshaw, J., Identification of biological activity profiles using substructural analysis and genetic algorithms, J. Chem. Inf. Comput. Sci., 38 (1998) 165–179.

    Article  PubMed  CAS  Google Scholar 

  70. Hawkins, D.M., Basak, S C. and Shi, X., QSAR with few compounds and many features, J. Chem. Inf. Comput. Sci., 41 (2001) 663–670.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodora Ivanciuc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanciuc, T., Ivanciuc, O. & Klein, D.J. Modeling the bioconcentration factors and bioaccumulation factors of polychlorinated biphenyls with posetic quantitative super-structure/activity relationships (QSSAR). Mol Divers 10, 133–145 (2006). https://doi.org/10.1007/s11030-005-9003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-005-9003-3

Key words

Navigation