Skip to main content
Log in

Multi-space classification for predicting GPCR-ligands

  • Full-length paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

A classification of molecules depends on the descriptor set which is used to represent the compounds, and each descriptor could be regarded as one perception of a molecule. In this study we show that a combination of several classifiers that are grounded on separate descriptor sets can be superior to a single classifier that was built using all available descriptors. The task of predicting ligands of G-protein coupled receptors (GPCR) served as an example application. The perceptron, multilayer neural networks, and radial basis function (RBF) networks were employed for prediction. We developed classifiers with and without descriptor selection. Prediction accuracy was assessed by the area under the receiver operating characteristic (ROC) curve. In the case with descriptor selection both the selection and the rank order of the descriptors depended on the type and topology of the neural networks. We demonstrate that the overall prediction accuracy of the system can be improved by joining neural network classifiers of different type and topology using a “jury network” that is trained to evaluate the predictions from the individual classifiers. Seventy-one percent correct prediction of GPCR ligands was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BP:

backpropagation algorithm

GA:

genetic algorithm

HTS:

high-throughput screening

MLP:

multilayer neural network (multilayer perceptron)

MSE:

mean square error

QSAR:

quantitative structure–activity relationship

RBF:

radial basis function

ROC:

receiver operating characteristic curve

References

  1. Böhm, H.-J. and Schneider, G. (Eds.) Virtual Screening for Bioactive Molecules, Wiley-VCH, Weinheim, 2000.

    Google Scholar 

  2. Muegge, I., Selection criteria for drug-like compounds, Med. Res. Rev., 23 (2003) 302–321.

    Article  CAS  Google Scholar 

  3. Fradera, X. and Mestres, J., Guided docking approaches to structure-based design and screening, Curr. Top. Med. Chem., 4 (2004) 687–700.

    Article  CAS  Google Scholar 

  4. Givehchi, A., Dietrich, A., Wrede, P. and Schneider, G., ChemSpaceshuttle: A tool for data mining in drug discovery by classification, projection, and 3D visualization, QSAR Comb. Sci., 5 (2003) 549–559.

    Google Scholar 

  5. The Chemical Computing Group Inc., MOE Manual, URL: http://www.chemcomp.com/Journal_of_CCG/Features/descr.htm, 2004.

  6. Todeschini, R. and Consonni, V., Handbook of Molecular Descriptors, WILEY-VCH, Weinheim, 2000.

    Google Scholar 

  7. So, S.S. and Karplus, M., A comparative study of ligand–receptor complex binding affinity prediction methods based on glycogen phosphorylase inhibitors, J. Comp. Aided Mol. Des., 13 (1999) 243–258.

    CAS  Google Scholar 

  8. Yasri, A. and Hartsough, D., Toward an optimal procedure for variable selection and QSAR model building, J. Chem. Inf. Comp. Sci., 41 (2001) 1218–1227.

    Article  CAS  Google Scholar 

  9. Saxena, A.K. and Prathipati, P., Comparison of MLR, PLS and GA-MLR in QSAR analysis, SAR QSAR Environ. Res., 14 (2003) 433–445.

    CAS  Google Scholar 

  10. Schneider, G. and Wrede, P., Artificial neural networks for computer-based molecular design, Prog. Biophys. Mol. Biol., 70 (1998) 175–222.

    CAS  Google Scholar 

  11. Sadowski, J., Database profiling by neural networks, in Böhm, H.-J. and Schneider, G. (Eds.), Virtual Screening for Bioactive Molecules, Wiley-VCH, Weinheim, 2000, pp. 117–130.

    Google Scholar 

  12. Zupan, J. and Gasteiger, J., Neural Networks in Chemistry and Drug Design. An Introduction, Wiley-VCH, Weinheim, 1999.

    Google Scholar 

  13. Schneider, P. and Schneider, G., Collection of bioactive reference compounds for focused library design, QSAR Comb. Sci., 22 (2003) 713–718.

    Article  CAS  Google Scholar 

  14. Anderson, J.A., Pellionisz, A. and Rosenfield, E. (Eds.) Neurocomputing 2: Directions for Research, MIT Press, Cambridge, MA, 1990.

    Google Scholar 

  15. Churchland, P.S. and Sejnowski, T.J., The Computational Brain, MIT Press, Cambridge, MA, 1992.

    Google Scholar 

  16. Rumelhart, D.E., Hinton, G.E. and Williams, R.J., Learning internal representations by error propagation, in Rumelhart, D.E. and McClelland, J.L. (Eds.), Parallel Distributed Processing, Vol. 1, MIT Press, Cambridge, MA, 1986, pp. 318–362.

    Google Scholar 

  17. Demuth, H. and Beal, M., Neural Network Toolbox, User's Guide, Version 4, 2001.

  18. Hagan, M.T., Demuth, H.B. and Beale, M.H., Neural Network Design, PWS Publishing, Boston, MA, 1996.

    Google Scholar 

  19. Hagan, M.T. and Menhaj, M., Training feedforward networks with the Marquardt algorithm, IEEE Trans. Neural Networks, 5 (1994) 989–993.

    Article  Google Scholar 

  20. Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, MA, 1989.

    Google Scholar 

  21. Leardi, R., Genetic algorithms in chemometrics and chemistry: A review, J. Chemometr., 15(7) (2001) 559–569.

    Article  CAS  Google Scholar 

  22. Leardi, R., Application of genetic algorithm-PLS for feature selection in spectral data sets, J. Chemometr., 14(5–6) (2000) 643–655.

    CAS  Google Scholar 

  23. Leardi, R., Boggia, R. and Terrile, M., Genetic algorithms for a strategy for feature selection, J. Chemometr., 14(5–6) (2000) 643–655.

    CAS  Google Scholar 

  24. Weber, L., Practical approaches to evolutionary design, in Böhm, H.-J., Schneider, G. (Eds.), Virtual Screening for Bioactive Molecules, Wiley-VCH, Weinheim, 2000, pp. 187–205.

    Google Scholar 

  25. Zweig, M.H. and Campbell, G., Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine, Clin. Chem., 39 (1993) 561–577.

    CAS  Google Scholar 

  26. Griner, P.F., Mayewski, R.J., Mushlin, A.I. and Greenland, P., Selection and interpretation of diagnostic tests and procedures, Ann. Int. Med., 94 (1981) 555–600.

    Google Scholar 

  27. Hanley, J.A. and McNeil, B.J., The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology, 143 (1982) 29–36.

    CAS  Google Scholar 

  28. Hanley, J.A. and McNeil, B.J., A method of comparing the areas under receiver operating characteristic curves derived from the same cases, Radiology, 148 (1983) 839–843.

    CAS  Google Scholar 

  29. Metz, C.E., Basic principles of ROC analysis, Semin. Nuclear Med., 8 (1978) 283–298.

    CAS  Google Scholar 

  30. Karwath, A. and King, R.D., Homology induction: The use of machine learning to improve sequence similarity searches, BMC Bioinform., 3(11) (2002).

  31. Broberg, P., Statistical methods for ranking differentially expressed genes, Genome Biol., 4(R41) (2003).

  32. Chen, S., Cowan, C.F.N. and Grant, P.M., Orthogonal least squares learning algorithm for radial basis function networks, IEEE Trans. Neural Networks, 2(2) (1991) 302–309.

    Article  Google Scholar 

  33. Moody, J. and Darken, C.J., Fast learning in networks of locally-tuned processing units, Neural Comput., 1–2 (1989) 281–294.

    Google Scholar 

  34. Broomhead, D.S. and Lowe, D., Multivariable functional interpolation and adaptive networks, Complex Sys., 2 (1988) 321–355.

    Google Scholar 

  35. Powell, M.J.D., Radial basis function for multivariate interpolation: A review, in Cox, M.G. and Mason, J.C. (Eds.), Algorithm for the Approximation of Function and Data, Oxford University Press, New York, 1985, pp. 143–167.

    Google Scholar 

  36. Musavi, M.T., Ahmed, W., Chan, K.H., Faris, K.B. and Hummels, D.M., On the training of radial basis function classifiers, Neural Networks, 5 (1992) 595–603.

    Article  Google Scholar 

  37. Bishop, C., Neural Networks for Pattern Recognition, Oxford University Press, Oxford, 1995.

    Google Scholar 

  38. Poggio, T. and Girosi, F., A Theory of Networks for Approximation and Learning, Massachussets Institute of Technology, AI Lab, Cambridge, MA, 1989.

    Google Scholar 

  39. Schwenker, F., Kestler, H.A. and Palm, G., Three learning phases for radial-basis-function networks, Neural Networks, 14 (2001) 439–458.

    Article  CAS  Google Scholar 

  40. Cichocki, A. and Unbehauen, R., Neural Networks for Optimization and Signal Processing, John Wiley and Sons, New York, 1993.

    Google Scholar 

  41. URL: http://www.statsoftinc.com/.

  42. Kohonen, T., Self-Organizing Maps, Springer, Berlin, 1995.

    Google Scholar 

  43. Givehchi, A. and Schneider, G., Impact of descriptor vector scaling on classification drugs and nondrugs with artificial neural networks, J. Mol. Model, 10 (2004) 204–211.

    Article  CAS  Google Scholar 

  44. Park, H., Amari, S. and Fukumizu, K., Adaptive natural gradient learning algorithms for various stochastic models, Neural Networks, 13 (2000) 755–764.

    Article  CAS  Google Scholar 

  45. Biganzoli, E., Boracchi, P., Mariani, L. and Marubini, E., Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach, Stat. Med., 17 (1998) 116–186.

    Article  Google Scholar 

  46. Sprinkhuizen-Kuyper, I.G. and Boers, E.J.W., The error surface of the 2-2-1 XOR network: The finite stationary points, Neural Networks, 11 (1998) 683–690.

    Article  Google Scholar 

  47. Polhill, J.G. and Weir, M.K., An approach to guaranteeing generalisation in neural networks, Neural Networks, 14 (2001) 1035–1048.

    Article  CAS  Google Scholar 

  48. Hamey, L.G.C., XOR has no local minima: A case study in neural network error surface analysis, Neural Networks, 11 (1998) 669–681.

    Article  Google Scholar 

  49. Schneider, G., Evolutionary molecular design in virtual fitnet landscape, in Böhm, H.-J. and Schneider, G. (Eds.), Virtual Screening for Bioactive Molecules, Wiley-VCH, Weinheim, 2000, pp. 161–186.

    Google Scholar 

  50. Byvatov, E., Fechner, U., Sadowski, J. and Schneider, G., Comparison of support vector machine and artificial neural network systems for drug/nondrug classification, J. Chem. Inf. Comput. Sci., 43 (2003) 1882–1889.

    Article  CAS  Google Scholar 

  51. Hemmateenejad, B., Akhond, M., Miri, R. and Shamsipur, M., Genetic algorithm applied to the selection of factors in principal component-artificial neural networks: Application to QSAR study of calcium channel antagonist activity of 1,4-dihydropyridines (nifedipine analogous), J. Chem. Inf. Comput. Sci., 43 (2003) 1328–1334.

    Article  CAS  Google Scholar 

  52. McClelland, H.E. and Jurs, P., Quantitative structure–property relationships for the prediction of vapor pressures of organic compounds from molecular structures, J. Chem. Inf. Comput. Sci., 40 (2000) 967–975.

    Article  CAS  Google Scholar 

  53. Tetko, I.V., Villa, A.E. and Livingstone, D.J., Neural network studies. 2. Variable selection, J. Chem. Inf. Comput. Sci., 36 (1996) 794–803.

    Article  CAS  Google Scholar 

  54. Gasteiger, J. and Marsali, M., Iterative partial equalization of orbital electronegativity: A rapid access to atomic charges, Tetrahedron, 36 (1980) 3219–3288.

    Article  CAS  Google Scholar 

  55. Wildman, S.A. and Crippen, G.M., Prediction of physiochemical parameters by atomic contributions, J. Chem. Inf. Comput. Sci., 39 (1999) 868–873.

    Article  CAS  Google Scholar 

  56. Balaban, A.T., Highly discriminating distance-based topological index, Chem. Phys. Lett., 89 (1982) 399–404.

    Article  CAS  Google Scholar 

  57. Wegner, J.K. and Zell, A., Prediction of aqueous solubility and partition coefficient optimized by a genetic algorithm based descriptor selection method, J. Chem. Inf. Comput. Sci., 43 (2003) 1077–1084.

    Article  CAS  Google Scholar 

  58. Balakin, K.V., Tkachenko, S.E., Lang, S.A., Okun, I., Ivashchenko, A.A. and Savchuk, N.P., Property-based design of GPCR-targeted library, J. Chem. Inf. Comput. Sci., 42 (2002) 1332–1342.

    Article  CAS  Google Scholar 

  59. Ajay, A., Walters, W.P. and Murcko, M.A., Can we learn to distinguish between “drug-like” and “nondrug-like” molecules?, J. Med. Chem., 41 (1998) 3314–3324.

    Article  CAS  Google Scholar 

  60. Sadowski, J. and Kubinyi, H., A scoring scheme for discriminating between drugs and nondrugs, J. Med. Chem., 41 (1998) 3325–3329.

    Article  CAS  Google Scholar 

  61. Fechner, U. and Schneider, G., Evaluation of distance metrics for ligand-based similarity searching, Chembiochem, 5 (2004) 538–540.

    Article  CAS  Google Scholar 

  62. Hert, J., Willett, P., Wilton, D.J., Acklin, P., Azzaoui, K., Jacoby, E. and Schuffenhauer, A., Comparison of fingerprint-based methods for virtual screening using multiple bioactive reference structures, J. Chem. Inf. Comput. Sci., 44 (2004) 1177–1785.

    Article  CAS  Google Scholar 

  63. Lam, R.L. and Welch, W.J., Comparison of methods based on diversity and similarity for molecule selection and the analysis of drug discovery data, Methods Mol. Biol., 275 (2004) 301–316.

    CAS  Google Scholar 

  64. Byvatov, E. and Schneider, G., SVM-based feature selection for characterization of focused compound collections, J. Chem. Inf. Comput. Sci., 44 (2004) 993–999.

    Article  CAS  Google Scholar 

  65. Byvatov, E. and Schneider, G., Support vector machine applications in bioinformatics, Appl. Bioinform., 2 (2003) 67–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Givehchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Givehchi, A., Schneider, G. Multi-space classification for predicting GPCR-ligands. Mol Divers 9, 371–383 (2005). https://doi.org/10.1007/s11030-005-6293-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-005-6293-4

Key Words

Navigation