Dynamic Analysis of Composite Sandwich Beams with a Frequency-Dependent Viscoelastic Core under the Action of a Moving Load

A dynamic analysis of the behavior of sandwich beams with a viscoelastic core under the action of a moving load is performed considering their geometrical asymmetry. The use of viscoelastic materials integrated into structures in front of the moving load is considered as a new suggestion to enhance their stability. A high-order theory, taking into consideration longitudinal and rotational inertias was used to examine the viscoelastic damping properties composite sandwich beams with account of their geometrical asymmetry and the frequency-dependent behavior of their viscoelastic core.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1.

    E. M. Kerwin, “Damping of flexural waves by a constrained viscoelastic layer,” J. Acoust. Soc. Am., 31, 952-962 (1958).

    Article  Google Scholar 

  2. 2.

    E. E. Ungar, “Loss factors of viscoelastically damped beam structures,” J. Acoust. Soc. Am., 34, 1082-1089 (1962).

    Article  Google Scholar 

  3. 3.

    Y. Y. Yuan, “Damping of flexural vibrations of sandwich plates,” J. Aero. Sci., 29, No. 7, 790-803 (1962).

    Google Scholar 

  4. 4.

    R. A. DiTaranto, “Theory of vibratory bending for elastic and viscoelastic layered finite-length beams,” J. Appl. Mech., 32, No. 4, 881-881 (1965).

    Article  Google Scholar 

  5. 5.

    D. K. Rao, “Frequency and loss factors of sandwich beams under various boundary conditions,” J. Mech. Eng. Sci., 20, No. 20, 271-282 (1978).

    Article  Google Scholar 

  6. 6.

    V. N. Paimushin, V. A. Firsov, I. Gynal, and V. M. Shishkin, “Identification of the elastic and damping characteristics of soft materials based on the analysis of damped flexural vibrations of test specimens,”Mech. Compos. Mater., 52, No. 4, 435-454 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    V. N. Paimushin, V. A. Firsov, I. Gynal and V. M. Shishkin, “Identification of the elastic and damping characteristics of carbon fiber-reinforced plastic based on a study of damping flexsural vibrations test specimens,” J. Appl. Mech. Tech. Phys., 57, No. 4, 720-730 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    V. N. Paimushin, V. A. Firsov, and V. M. Shishkin, “Identification of the dynamic elasticity characteristics and damping properties of the OT-4 titanium alloy based on study of damping flexural vibrations of the test specimens,” J. Mach. Manuf. Reliab., 48, No. 2, 119-129 (2019).

    Article  Google Scholar 

  9. 9.

    E. M. Daya and M. Potier-Ferry, “A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures,” J. Comput. Struct., 79, No. 5, 533-541 (2001).

    Article  Google Scholar 

  10. 10.

    E. M. Daya, L. Azrar, and M. Potier-Ferry, “An amplitude equation for the non-linear vibration of viscoelastically damped sandwich beams,” J. Sound Vib., 271, No. 3-5, 789-813 (2004).

    Article  Google Scholar 

  11. 11.

    M. Bilasse, E. M. Daya, and L. Azrar, “Linear and nonlinear vibrations analysis of viscoelastic sandwich beams,” J. Sound. Vib., 329, No. 23, 4950-4969 (2010).

    Article  Google Scholar 

  12. 12.

    A. Arikoglu and I. Ozkol, “Vibration analysis of composite sandwich beams with viscoelastic core by using differential transform method,” Compos. Struct., 92, No. 12, 3031-3039 (2010).

    Article  Google Scholar 

  13. 13.

    L. Irazu and M. J. Elejabarrieta, “The effect of the viscoelastic film and metallic skin on the dynamic properties of thin sandwich structures,” Compos. Struct., 176, No. 15, 407-419 (2017).

    Article  Google Scholar 

  14. 14.

    F. S. Barbosa, M. C. R. Farage, “A finite element model for sandwich viscoelastic beams: Experimental and numerical assessment,” J. Sound Vib., 317, No. 1-2, 91-11 (2008).

    Article  Google Scholar 

  15. 15.

    H. Arvin, M. Sadighi, and A. R. Ohadi, “A numerical study of free and forced vibration of composite sandwich beam with viscoelastic core,” Compos. Struct., 92, No. 4, 996-1008 (2010).

    Article  Google Scholar 

  16. 16.

    J. S. Moita, A. Araújo, L. Martins, et al., “A finite element model for the analysis of viscoelastic sandwich structures,” J. Comput. Struct., 89, No. 21-22, 1874-1881 (2011).

    Article  Google Scholar 

  17. 17.

    M. Latifi, M. Kharazi, and H. R. Ovesy, “Effect of Integral viscoelastic core on the nonlinear dynamic behaviour of composite sandwich beams with rectangular cross sections,” Int. J. Mech. Sci., 123, 141-150 (2017).

    Article  Google Scholar 

  18. 18.

    Y. Khadri, S. Tekili, E. M. Daya, et al., “Effects of rail joints and train’s critical speed on the dynamic behavior of bridges,” Mechanika, 19, No. 1, 46-52 (2013).

    Article  Google Scholar 

  19. 19.

    Y. Khadri, S. Tekili, E. M. Daya, et al., “Dynamic analysis of train-bridge system and riding comfort of trains with rail irregularities,” J. Mech. Sci. Technol., 27, No. 4, 951-962 (2013).

    Article  Google Scholar 

  20. 20.

    S. Tekili, Y. Khadri, B. Merzoug, et al.,” Free and forced vibration of beams strengthened by composite coats subjected to moving loads,” Mech. Compos. Mater., 52, No. 6, 789-798 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    M. A. Hilal and H. S. Zibdeh, “Vibration analysis of beams with general boundary conditions traversed by a moving force,” J. Sound. Vib., 229, No. 2, 377-388 (2000).

    Article  Google Scholar 

  22. 22.

    F. Giunta, G. Muscolino, A. Sofi, et al., “Dynamic analysis of Bernoulli-Euler beams with interval uncertainties under moving loads,” Procedia Eng., 199, 2591-2596 (2017).

    Article  Google Scholar 

  23. 23.

    Y. Chen, Y. Fu, J. Zhong, et al., “Nonlinear dynamic responses of fiber-metal laminated beam subjected to moving harmonic loads resting on tensionless elastic foundation,” Compos. Part B Eng., 131, 253–259 (2017).

    Article  Google Scholar 

  24. 24.

    C. Tao, Y. M. Fu, and H. L. Dai, “Nonlinear dynamic analysis of fiber metal laminated beams subjected to moving loads in thermal environment,” Compos. Struct., 140, 410–416 (2016).

    Article  Google Scholar 

  25. 25.

    V. Sarvestan, H. R. Mirdamadi, and M. Ghayour, “Vibration analysis of cracked Timoshenko beam under moving load with constant velocity and acceleration by spectral finite element method,” Int. J. Mech. Sci., 122, 318-330 (2017).

    Article  Google Scholar 

  26. 26.

    Z. Kiraland and B. G. Kiral, “Dynamic analysis of a symmetric laminated composite beam subjected to a moving load with constant velocity,” J. Reinf. Plast., Compos., 27, No. 1, 19-32 (2008).

    Article  Google Scholar 

  27. 27.

    Y. Fuh-Gwo and R. E. Miller, “A new finite element for laminated composite beams,” J. Comput. Struct., 31, No. 27, 737-745 (1989).

    Article  Google Scholar 

  28. 28.

    V. Kahya, “Finite element dynamic analysis of laminated composite beams under moving loads,” Struct. Eng. Mech., 42, 729-745 (2012).

    Article  Google Scholar 

  29. 29.

    B. Persoz, La Rhéologie. Masson & Cie, Paris (1969).

    Google Scholar 

  30. 30.

    M. Haberman, Design of high-loss viscoelastic composites through micromechanical modeling and decision based material by design, PhD Thesis, George W. Woodruff School of Mechanical Engineering, Georgia, (2007).

    Google Scholar 

  31. 31.

    E. Carrera, F. A. Fazzolari, and M. Cinefra, in: Thermal Stress Analysis of Beams Plates and Shells, Coupled and uncoupled variational formulations, Elsevier (2017), pp. 81–87.

  32. 32.

    S. Adhikari, Damping models for structural vibration, PhD thesis, Cambridge University, UK, (2000).

    Google Scholar 

  33. 33.

    M. Trindade, A. Benjeddou, and R. Ohayon, “Modeling of frequency dependent viscoelastic materials for active–passive vibration damping,” J. Vib. Acoust., 122, No. 2, 169-174 (2000).

    Article  Google Scholar 

  34. 34.

    B. Cochelin, N. Damiland, and M. Potier-Ferry, Méthode Asymptotique Numérique, Hermès Science publications, France (2007).

    Google Scholar 

  35. 35.

    N. Damil, “An iterative method based upon Padé approximants,” Commun. Numer. Methods Eng., 15, No. 10, 701-708 (1999).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Y. Karmi.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 56, No. 6, pp. 1095-1112, November-December, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karmi, Y., Khadri, Y., Tekili, S. et al. Dynamic Analysis of Composite Sandwich Beams with a Frequency-Dependent Viscoelastic Core under the Action of a Moving Load. Mech Compos Mater 56, 755–768 (2021). https://doi.org/10.1007/s11029-021-09921-w

Download citation


  • viscoelastic material
  • moving load
  • passive damping
  • finite element
  • asymptotic numerical method