Numerical Simulation of Progressive Delamination in Composite Laminates Under Mode I and Mode II Loadings

A progressive interlaminar damage model, based on the Northwestern University theory and a trapezoidal trilinear traction-separation law, is presented to predict the initiation and propagation of delamination in layered composites under Mode I and Mode II loadings. The capability and reliability of the damage model proposed is assessed by comparing its results with experimental data. It was found that the model was able to accurately predict the maximum load and postfailure behavior of composite laminates. The model proposed was also compared with the Abaqus inbuilt cohesive surface model, which is also based on a bilinear tractionseparation law, and our model was found to give more accurate results.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.


  1. 1.

    B. Z. Haque and J. W. Gillespie, “Finite element modeling of impact, damage evolution and penetration of thick-section composites,” Int. J. Impact Eng., 38, 181-197, (2011).

    Article  Google Scholar 

  2. 2.

    M. Kashtalyan and C. Soutis, “Modelingstiffness degradation due to matrix cracking in angleply composite laminates,” Plast. Rubber Compos. Process. Appl., 29, 482-488, (2000).

    CAS  Article  Google Scholar 

  3. 3.

    G. Lampeas, K. Fotopoulos, and N. Perogamvros, “Development and experimental validation of explicit dynamics simulation of composite structures using a stacked thick-shell methodology,” Plast. Rubber Compos., 45, 58-67, (2016).

    CAS  Article  Google Scholar 

  4. 4.

    S. Yazdani, W. J. H. Rust, and P. Wriggers, “An XFEM approach for modelingdelamination in composite laminates,” Compos. Struct., 135, 353-364, (2016).

    Article  Google Scholar 

  5. 5.

    O. Allix and P. Ladevèze, “Interlaminar interface modelingfor the prediction of delamination,” Compos. Struct., 22, 235-242, (1992).

    Article  Google Scholar 

  6. 6.

    J. Herwan, A. Kondo, S. Morooka, et al., “Finite element analysis of mode II delamination suppression in stitched composites using cohesive zone model,” Plast. Rubber Compos., 44, 390-396, (2015).

    CAS  Article  Google Scholar 

  7. 7.

    M. Heidari-Rarani and A. R. Ghasemi, “Appropriate shape of cohesive zone model for delamination propagation in ENF specimens with R-curve effects,” Theor. Appl. Fract. Mech., 90, 174-181, (2017).

    CAS  Article  Google Scholar 

  8. 8.

    R. K. Joki, F. Grytten, B. Hayman, et al., “Determination of a cohesive law for delamination modeling- Accounting for variation in crack opening and stress state across the test specimen width,” Compos. Sci. Technol., 128, 49-57, (2016).

    CAS  Article  Google Scholar 

  9. 9.

    A. Turon, P. P. Camanho, J. Costa, et al., “Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness,” Compos. Struct., 92, 1857-1864, (2010).

    Article  Google Scholar 

  10. 10.

    I. M. Daniel, B. T. Werner, and J. S. Fenner, “Strain-rate-dependent failure criteria for composites,” Compos. Sci. Technol., 71, 357-364, (2011).

    CAS  Article  Google Scholar 

  11. 11.

    V. Tvergaard and J. W. Hutchinson, “The relation between crack growth resistance and fracture process parameters in elastic-plastic solids,” J. Mech. Phys. Solids., 40, 1377-1397, (1992).

    Article  Google Scholar 

  12. 12.

    T. K. O’Brien, “Interlaminar fracture toughness: the long and winding road to standardization,” Compos. Part B Eng., 29, 57-62, (1998).

    Article  Google Scholar 

  13. 13.

    P. P. Camanho and C. G. Davila, “Mixed-mode decohesion finite elements for the simulation of delamination of composite materials,” NASA, TM-2002-21, 1-37, (2002).

  14. 14.

    ASTM. Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, D5528-14, West Conshohocken, PA. 2014.

  15. 15.

    International Standards Organization. BSEN. 15024. Fibre-reinforced plastic composites. Determination of mode I interlaminar fracture toughness. GIC, for unidirectionally reinforced materials (2001).

  16. 16.

    M. H. Salek, Effect of Processing Parameters on the Mechanical Properties of Carbon/PEKK Thermoplastic Composite Materials, Concordia University, Canada, (2005).

    Google Scholar 

  17. 17.

    B. Derisi, S. V. Hoa, D. Xu, et al., “Mechanical behavior of carbon/PEKK thermoplastic composite tube under bending load,” J. Thermoplast. Compos. Mater., 24, 29-49, (2011).

    CAS  Article  Google Scholar 

  18. 18.

    ASTM. Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, D7905/D7905M-14, West Conshohocken, PA. (2014).

  19. 19.

    C. Bouvet, S. Rivallant, and J. J. Barrau, “Low velocity impact modeling in composite laminates capturing permanent indentation,” Compos. Sci. Technol., 72, 1977-88, (2012).

    CAS  Article  Google Scholar 

Download references


This work was funded by the National Science Foundation of China (contract No. 41602373, 51905353) and the China Postdoctoral Science Foundation Grant (2018M631817).

Author information



Corresponding author

Correspondence to J. Zhao.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 56, No. 6, pp. 1067-1080, November-December, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z.Z., Zhao, J., Ma, X. et al. Numerical Simulation of Progressive Delamination in Composite Laminates Under Mode I and Mode II Loadings. Mech Compos Mater 56, 735–746 (2021).

Download citation


  • delamination
  • softening law
  • cohesive zone method
  • computational model