Skip to main content
Log in

An Adaptive Structure Based on Hybrid Extension-Twisting Coupled Laminates

  • Published:
Mechanics of Composite Materials Aims and scope

Based on the classical laminate theory and proceeding from the necessary and sufficient conditions for the hygrothermal stability of materials, interlayer hybrid extension-twisting coupled free-layer laminates are designed. Then, analytical solutions for their yield and buckling strengths are derived. A mathematical model for the optimum design of composite structure is established to realize a synchronous multiobjective design of for interlayer hybrid extension-twisting coupled laminates. The finite-element method is used to simulate the hygrothermal effect, extension-twisting coupling, and buckling load of the laminates. Afterwards, an analysis of hygrothermal warping deformation and stiffness performance of the laminates is carried out to verify the suitability of the design method. Finally, the extension-twisting and bending-twisting coupled structures are constructed using the hybrid extension-twisting coupled laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. O. Song and H. D. Kwon, “Modeling and vibration of a non-classical tilt-rotor wing system,” Aeronautical Journal, 111, No. 1119, 285-295 (2007).

    Article  Google Scholar 

  2. J. Li and D. K. Li, “Multi-objective optimization of hygro-thermally curvature-stable antisymmetric laminates with extension-twisting coupling,” Journal of Mechanical Science and Technology, 28, No. 4, 1373-1380 (2014).

    Article  Google Scholar 

  3. R. A. Haynes and E. A. Armanios, “New families of hygrothermally stable composite laminates with optimal extensiontwisting coupling,” AIAA Journal, 48, No. 12, 2954-2961 (2010).

    Article  CAS  Google Scholar 

  4. A. Kaveh, A. Dadras and N. G. Malek, “Optimum stacking sequence design of composite laminates for maximum buckling load capacity using parameter-less optimization algorithms,” Engineering with Computers, 1-20 (2018).

  5. M. Petrovic, T. Nomura, T. Yamada, et al., “Orthotropic material orientation optimization method in composite laminates,” Structural and Multidisciplinary Optimization, 57, No. 2, 815-828 (2018).

    Article  Google Scholar 

  6. S. Kulkarni and B. Rosen, “Evaluation of the cost-effectiveness of hybrid composite laminates,” Journal of Aircraft, 14, No. 12, 1153-1154 (2013).

    Article  Google Scholar 

  7. S. Adali, A. Richter, V. E. Verijenko, et al., “Optimal design of hybrid laminates with discrete ply angles for maximum buckling load and minimum cost,” Composite Structures, 32, No. 1-4, 409-415 (1995).

    Article  Google Scholar 

  8. X. Y. Zhang, Y. Peng, Y. J. Xie, et al., “Hygrothermoelastic response of a hollow cylinder based on a coupled time-fractional heat and moisture transfer model,” Zeitschrift Für Angewandte Mathematik Und Physik Zamp, 70, No. 2, (2019).

    Google Scholar 

  9. Y. Peng, X. Y. Zhang, and X. F. Li, “Transient hygrothermoelastic response in a porous cylinder subjected to ramp-type heat-moisture loading,” Journal of Thermal Stresses, 42, 1499-1514 (2019).

    Article  Google Scholar 

  10. R. A. Haynes and E. A. Armanios, “The challenge of achieving hygrothermal stability in composite laminates with optimal couplings,” International Journal of Engineering Science, 59 (2012).

  11. C. B. York, “On extension-shearing coupled laminates,” Composite Structures, 120, 472-482 (2015).

    Article  Google Scholar 

  12. M. C. S. Moreno, A. R. Gutiérrez, and J. L. M. Vicente, “First flexural and interlaminar shear failure in symmetric cross-ply carbon-fibre laminates with different response under tension and compression,” Composite Structures, 146, 62-68 (2016).

    Article  Google Scholar 

  13. Y. Q. Huang and Q. S. Li, “Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method,” Computer Methods in Applied Mechanics & Engineering, 193, No. 33-35, 3471-3492 (2004).

    Article  Google Scholar 

  14. D. Cui and D. K. Li, “Optimization of hybrid laminates with extension-shear coupling,” international journal of aerospace engineering, 1-12 (2018).

  15. R. J. Cross, R. A. Haynes, and E. A. Armanios, “Families of hygrothermally stable asymmetric laminated composites,” Journal of Composite Materials, 42, No. 7, 697-716 (2008).

    Article  CAS  Google Scholar 

  16. O. Erdal and F. O. Sonmez, “Optimum design of composite laminates for maximum buckling load capacity using simulated annealing,” Composite Structures, 71, No. 1,45-52 (2005).

    Article  Google Scholar 

  17. J. Majak and S. Hannus, “Orientational design of anisotropic materials using the Hill and Tsai–Wu strength criteria,” Mech. Compos. Mater., 39, No. 6, 509-520 (2003).

    Article  Google Scholar 

  18. J. Majak and M. Pohlak, “Optimal material orientation of linear and non-linear elastic 3D anisotropic materials,” Meccanica, 45, No. 5, 671–680 (2010).

    Article  Google Scholar 

  19. J. Li and D. K. Li, “Extension-shear coupled laminates with immunity to hygro-thermal distortion,” Composite Structures, 123, 401-407 (2015).

    Article  Google Scholar 

  20. M. M. Ali and W. X. Zhu, “A penalty function-based differential evolution algorithm for constrained global optimization,” Computational Optimization & Applications, 54, No. 3, 707-739 (2013).

    Article  Google Scholar 

  21. S. C. Chou, Delamination of T300/5208 Graphite/Epoxy Laminates. Fracture of Composite Materials, Springer Netherlands (1982).

    Book  Google Scholar 

  22. D. Cui and D. K. Li, “Bending-twisting coupled structures based on composite laminates with extension-shear coupling effect,” Composite Structures, 209, No. 1, 434-442 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Li.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 56, No. 5, pp. 881-904, September-October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, D., Li, D.K. An Adaptive Structure Based on Hybrid Extension-Twisting Coupled Laminates. Mech Compos Mater 56, 601–618 (2020). https://doi.org/10.1007/s11029-020-09907-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-020-09907-0

Keywords

Navigation