Mechanics of Composite Materials

, Volume 55, Issue 1, pp 63–68 | Cite as

Experimental Verification of the Theory of Structural-Mechanical Behavior of a Filled 3D Cross-Linked Elastomer

  • A. S. Ermilov
  • E. NurullaevEmail author
  • N. Y. Lyubimova

With the example of a silicon dioxide-filled 3D cross-linked plasticized elastomer based on a SCID-L highmolecular copolymer, the theory of structural-mechanical behavior of the polymer composite material has been tested experimentally. Theoretically calculated values of mechanical fracture energy are compared with experimental data, including the construction of their locus in uniaxial tension at temperatures of 223-323 K. The difference between theoretical and experimental data does not exceed 5%, which is acceptable for the engineering practice.


elastomer composite uniaxial tension fracture energy breaking elongation breaking strain plasticizer filler binder SKID-L rubber 


  1. 1.
    A. S. Ermilov and E. M. Nurullaev, “Mechanical properties of elastomers filled with solid particles,” Mech. Compos. Mater., 48, No. 3, 243-252 (2012).CrossRefGoogle Scholar
  2. 2.
    A. S. Ermilov and E. M. Nurullaev, “Energy of the mechanical destruction of an elastomer filled with solid particles,” Mech. Compos. Mater., 50, No. 6, 757-762 (2015).CrossRefGoogle Scholar
  3. 3.
    I. A. Stepanov,.”Relation between the energy of destruction activation of composites and their composition,” Fizich. Mezomekh., 9, No. 5, 59-61 (2006).Google Scholar
  4. 4.
    A. N. Romanov, Destruction in a Low-Cycle Loading [in Russian], M., Nauka (1988).Google Scholar
  5. 5.
    G. P. Cherepanov, Destruction Mechanics of Composite Materials [in Russian], M., Nauka (1983).Google Scholar
  6. 6.
    A. A. Shanyavskii, Safe Fatigue Failure of Aircraft Elements [in Russian], Synergetrics in Engineering Applications, Ufa, (2003).Google Scholar
  7. 7.
    Certificate № 2014618964 of Russian Federations. Calculation of destruction energy of polymer composite materials, A. S. Yermilov, E. M. Nurullaev, and K. A. Duregin, Priority from 7.17.2014.Google Scholar
  8. 8.
    E. M. Nurullaev and A. S. Ermilov, “Optimizing thecomposition of elastomer composites for the fracture energy, Mech. Compos. Mater., 52, No. 2 (2016).Google Scholar
  9. 9.
    Patent No. 2473581 of Russian Federations. A waterproofing cold-resistant asphalt covering of highways. A. S. Yermilov, E. M. Nurullaev, and V. N. Alikin. Priority from 05.31.2011.Google Scholar
  10. 10.
    T. L.. Smith, “Limited characteristics of crosslink polymers,” J. Appl. Phys., No. 35, 27-32 (1964).Google Scholar
  11. 11.
    T. L. Smith and W. H. Chy, “Ultimate tensile properties of elastomers,” J. Polymer Sci., Part A 2, 10, No. 1, 133-150 (1972).CrossRefGoogle Scholar
  12. 12.
    N. N. Moiseev, Yu. P. Ivanilov, and E. M. Stolyarova, Optomization Methods [in Russian], M., Nauka, (1978).Google Scholar
  13. 13.
    A. M. Fedoseev, “A combinational-multiplicative method for calculating the ultimate filling of composite materials with solid dispersed components,” Zhurn. Prikld. Khim., 77, Iss. 7, 1218-1220 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. S. Ermilov
    • 1
  • E. Nurullaev
    • 1
    Email author
  • N. Y. Lyubimova
    • 1
  1. 1.Perm National Research Polytechnical UniversityPermRussia

Personalised recommendations