Mechanics of Composite Materials

, Volume 55, Issue 1, pp 53–62 | Cite as

Structure and Mechanical Properties of a Dispersedly Filled Transparent Polycarbonate

  • M. P. DanilaevEmail author
  • E. A. Bogoslov
  • V. A. Kuklin
  • M. A. Klabukov
  • O. L. Khamidullin
  • Yu. E. Pol’sky
  • S. A. Mikhailov

The structure and mechanical properties of a composition on the basic of polycarbonate filled with three types of dispersed particles (submicron corundum, micron boron nitride, and glass fiber ones) were investigated. It is shown that the method of sample preparation proposed ensures a uniform distribution of filler particles in them. Slight changes in the supramolecular structure of polycarbonate were seen only in the case of introduction of submicron corundum particles. No such changes occurred in the case of micron boron nitride or glass fiber particles in amounts providing an optical transparency no less than 70%, which can be explained by insufficient interaction forces between filler particles and polycarbonate molecules. It is shown that filling polycarbonate with various fillers allowing the retention of its optical transparency does not make it possible to increase its wear resistance and softening temperature. The weight parts of dispersed filler at which the transparency does not decrease below 70 % are ~0.06, ~0.03, and ~1.0% for corundum, boron nitride, and glass fiber particles, respectively.


polycarbonate nanocomposite dispersed filler supramolecular structure optical properties thermomechanical properties strength 



This study was supported by the Russian Foundation for Basic Research (project No. 18-48-160024).


  1. 1.
    M. E. J. Dekkers and D. Heikens, “The tensile behavior of polycarbonate and polycarbonate-glass bead composites,” J. Appl. Polymer Sci., 30, No. 6, 2389-2400 (1985).CrossRefGoogle Scholar
  2. 2.
    A. I. Kupchishin, B. G. Taipova, A. A. Kupchishin, and B. A. Kozhamkulov, “Study on the physical and mechanical properties of composites based on polyimide and polycarbonate,” Mech. Compos. Mater., 51, No. 1, 115-118 (2015).CrossRefGoogle Scholar
  3. 3.
    I. Yu. Zolkina, S. A. Radzinsky, V. V. Amerik, T. I. Andreeva, I. D. Simonov-Emelyanov, and N. V. Apeksimov, “Investigation of the effect of a filler mixture on the abrasion resistance and optical characteristics of polycarbonate,” Plast. Massy, No. 7, 36-39 (2012).Google Scholar
  4. 4.
    M. G. Hametova, “Thermomechanical investigation of polycarbonates in the solid state,” Plast. Massy, No. 5, 40-41 (2012).Google Scholar
  5. 5.
    N. Kim, “Recent progress of functional coating materials and technologies for polycarbonate,” J. Coatings Technol. Res., 14, No. 1, 21-34 (2017).CrossRefGoogle Scholar
  6. 6.
    A. А. Berlin et al., Principles of Creation of Composite Polymer Materials [in Russian], M., Khimia (1990).Google Scholar
  7. 7.
    L. I. Bondaletova and V. G. Bondaletov, Polimer Composite Materials [in Russian], Tomsk, Izd. Tomsk. Politekh. Univ. (2013).Google Scholar
  8. 8.
    Ch. Seubert, K. Nietering, M. Nichols, R. Wykoff, and Sh. Bollin, “An overview of the scratch resistance of automotive coatings: Exterior clearcoats and polycarbonate hardcoats,” Coatings, 2, 221-234 (2012).CrossRefGoogle Scholar
  9. 9.
    S. J. Charde, S. S. Sonawane, S. H. Sonawane, and S. Navin, “Influence of functionalized calcium carbonate nanofillers on the properties of melt-extruded polycarbonatecomposites,” Chem. Eng. Communications, 205, Iss. 4, 492-505 (2018).CrossRefGoogle Scholar
  10. 10.
    S. Amirchakhmaghi, A. Alavi Nia, G. Azizpour, and H. Bamdadi, “The effect of surface treatment of alumina nanoparticles with a silane coupling agent on the mechanical properties of polymer nanocomposites,” Mech. Compos. Mater., 51, No. 3, 347-358 (2015).CrossRefGoogle Scholar
  11. 11.
    G. A. Forental, S. B. Sapozhnikov, and A. A. Dyakonov, “Physicomechanical characteristics of an elastomeric composite containing silicon oxide nanoparticles with account of interface layer,” Mech. Compos. Mater., 51, No. 3, 341-346 (2015).CrossRefGoogle Scholar
  12. 12.
    J. A. Lock and P. Laven, “Understanding light scattering by a coated sphere. 1. Theoretical considerations,” J. Opt. Soc. Am. A., 29, No. 8 (2012).Google Scholar
  13. 13.
    К. Boren and D. Khafmen, Absorption and Dispersion of Light by Small Particles [in Russian], M., Mir (1986).Google Scholar
  14. 14.
    K. D. Weaver and J. O. Stoffer, “Preparation and properties of optically transparent, pressure-cured poly (methyl methacrylate) composites,” Polym. Compos. 14, No.6, 515-523 (1993).CrossRefGoogle Scholar
  15. 15.
    J. A. Lock and P. Laven, “Understanding light scattering by a coated sphere. 2. Time domain analysis,” J. Opt. Soc. Am. A., 29, No. 8, (2012).Google Scholar
  16. 16.
    M. E. J. Dekkers and D. Heikens, “Shear band formation in polycarbonate-glass bead composites,” J. Mater. Sci., 19, 3271-3275 (1984).CrossRefGoogle Scholar
  17. 17.
    O. Y. Bogomolova, I. R. Biktagirova, M. P. Danilaev, M. A. Klabukov, Yu. E. Polsky, A. A. Tsentsevitsky, and S. Pillai, “Effect of adhesion between submicron filler particles and a polymeric matrix on the structure and mechanical properties of epoxy-resin-based compositions,” Mech. Compos. Mater., 53, No. 1, 117-122 (2017).CrossRefGoogle Scholar
  18. 18.
    A. Pakdel, Y. Bando, and D. Golberg, “Plasma-assisted interface engineering of boron nitride nanostructure films,” ACS Nano., 8, 10631-10639 (2014).CrossRefGoogle Scholar
  19. 19.
    G. N. Petrov, I. V. Starostin, T. V. Rumyantseva, and Yu. A. Sapego, “Efficiency of quality improvement of products from polycarbonate by a heat treatment,” Tr. VIAM, 57, No. 9, 45-55 (2017).Google Scholar
  20. 20.
    V. V. Trineeva, Yu.V. Pershin, S. G. Bystrov, V. I. Kolodov, “Investigation of the influence of supersmall quantities of a metal/carbon nanocomposite on the structure of polycarbonate,” Khim. Fiz. Mezoskopiya, 17, No. 1, 126-131 (2015).Google Scholar
  21. 21.
    R. Avolio, G. Gentile, M. Cocca, M. Avella, and M. E. Errico, “Role of silica nanoparticles on network formation and properties in thermoset polycarbonate based nanocomposites,” Polymer Testing, 60, 388-395 (2017).CrossRefGoogle Scholar
  22. 22.
    Th. Hanemann and D. V. Szabó, “Polymer-nanoparticle composites: from synthesis to modern applications,” Materials, No. 3, 3468-3517 (2010).Google Scholar
  23. 23.
    G. M. Odegard, T. C. Clancy, and T. S. Gates, “Modeling of the mechanical properties of nanoparticle/polymer composites,” Polymer, 46, No. 2, 553-562 (2005).CrossRefGoogle Scholar
  24. 24.
    F. Jahantigh and M. Nazirzadeh, “Synthesis and characterization of TiO2 nanoparticles with polycarbonate and investigation of its mechanical properties,” Int. J. Nanoscience, 16, Iss. 5-6 (2017).Google Scholar
  25. 25.
    I. Taraghi, A. Fereidoon, S. Paszkiewicz, A. Szymczyk, R. Chylinska, A. Kochmanska, and Z. Roslaniec, “Microstructure, thermal stability, and mechanical properties of modified polycarbonate with polyolefin and silica nanoparticles,” Polym. Advanced Technol., 28, Iss. 12, 1794-1803 (2017).CrossRefGoogle Scholar
  26. 26.
    R. V. Christensen, Mechanics of Composite Materials, John Wiley & Sons, New York–Chichester–Brisbane–Toronto (1979).Google Scholar
  27. 27.
    S. V. Astafurov, E. V. Shilko, V. E. Ovcharenko, and S. G. Psahye, “Research into the influence of interface properties on the mechanical characteristics of ceramic-metal composites,” Fiz. Mezomekhanika, 17, No. 3, 53-63 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. P. Danilaev
    • 1
    Email author
  • E. A. Bogoslov
    • 1
  • V. A. Kuklin
    • 1
    • 2
  • M. A. Klabukov
    • 1
  • O. L. Khamidullin
    • 1
  • Yu. E. Pol’sky
    • 1
  • S. A. Mikhailov
    • 1
  1. 1.N. Tupolev Kazan National Research Technical University, KAIKazanRussia
  2. 2.Kazan Federal UniversityKazanRussia

Personalised recommendations