Skip to main content
Log in

Investigation of Carbon Fiber- and Wollastonite-Filled Graphite/Asphalt/Cu Composite Materials Using the Gene Expression Programming

  • Published:
Mechanics of Composite Materials Aims and scope

The effect of addition of carbon fibers and wollastonite on the mechanical properties of graphite/asphalt/Cu composites is described. The gene expression programming method is used to predict the effects of fillers on their properties. A multiconstraint optimization problem is solved, and the optimum composition is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. N. A. Radzuan, M. Y. Zakaria, and A. B. Sulong, “The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites,” Composites: Part B, 110, 153-160 (2017).

  2. A. B. Sulong, M. I. Ramli, and S. L. Hau, “Rheological and mechanical properties of carbon nanotube/graphite/SS316L/ polypropylene nano-composite for a conductive polymer composite,” Composites: Part B, 50, 54-61 (2013).

    Article  CAS  Google Scholar 

  3. X. W. Zhao, C. G. Zang, and Q. K. Ma, “Thermal and electrical properties of composites based on (3-mercaptopropyl) trimethoxysilane and Cu-coated carbon fiber and silicone rubber,” J. Mater. Sci., 51, N. 8, 1-8 (2016).

    Article  CAS  Google Scholar 

  4. J. Z. Liang, B. Li, J. and Q. Ruan, “Crystallization properties and thermal stability of polypropylene composites filled with wollastonite,” Polymer Testing, 42, 185-191 (2015).

    Article  CAS  Google Scholar 

  5. J. H. Yu, C. Li, and Q. S. Yao, “Study on the performance of wollastonite modified PTFE composite material,” Adv. Mater. Res., 1089 (2014).

  6. J. N. Panda, J. Bijwe, and R. K. Pandey, “Role of treatment to graphite particles to increase the thermal conductivity in controlling tribo-performance of polymer composites,” Wear, 360, 87-96 (2016).

    Article  CAS  Google Scholar 

  7. M. Y. Zakaria, A. B. Sulong, and J. Sahari, “Effect of the addition of milled carbon fiber as a secondary filler on the electrical conductivity of graphite/epoxy composites for electrical conductive material,” Composites: Part B, 83, 75-80 (2015).

    Article  CAS  Google Scholar 

  8. M. C. Hsiao, S. H. Liao, and M. Y. Yen, “Effect of graphite sizes and carbon nanotubes content on flow ability of bulk-molding compound and formability of the composite bipolar plate for fuel cell,” J. Power Sources, 195, No. 17, 5645-5650 (2010).

    Article  CAS  Google Scholar 

  9. C. J. Tu, D. Chen, and Z. H. Chen, “Improving the tribological behavior of graphite/Cu matrix self-lubricating composite contact strip by electroplating Zn on graphite,” Tribology Let., 31, No. 2, 91-98 (2008).

    Article  CAS  Google Scholar 

  10. C. J. Tu, Z. Chen, and J. Xia, “Thermal wear and electrical sliding wear behaviors of the polyimide modified polymermatrix pantograph contact strip,” Tribology Int., 42, No. 6, 995-1003 (2009).

    Article  CAS  Google Scholar 

  11. B. C. D. Luan, J. Huang, and J. Zhang, “Enhanced thermal conductivity and wear resistance of polytetrafluoroethylene composites through boron nitride and zinc oxide hybrid fillers,” J. Appl. Polymer Sci., 132, No. 30 (2015).

    Article  Google Scholar 

  12. C. Zhang, J. Song, and L. Jiang, “Fabrication and tribological properties of WC-TiB 2 composite cutting tool materials under dry sliding condition,” Tribology Int., 109, 97-103 (2017).

    Article  CAS  Google Scholar 

  13. J. Yuan, Z. Zhang, and M. Yang, “Surface modification of hybrid-fabric composites with amino silane and polydopamine for enhanced mechanical and tribological behaviors,” Tribology Int., 107, 10-17 (2017).

    Article  CAS  Google Scholar 

  14. T. Gurunathan, C. R. K. Rao, and R. Narayan, “Polyurethane conductive blends and composites: synthesis and applications perspective,” J. Mater. Sci., 48, No. 1, 67-80 (2013).

    Article  CAS  Google Scholar 

  15. D. S. Mclachlan, “An equation for the conductivity of binary mixtures with anisotropic grain structures,” J. Physics C Solid State Physics, 20, No. 7, 865 (2000).

    Article  Google Scholar 

  16. D. S. Mclachlan, M. Blaszkiewicz, and R. E. Newnham, Electrical resistivity of composites,” J. Am. Ceramic Soc., 73, No. 8, 2187-2203 (2010).

    Article  Google Scholar 

  17. M. Müller and G. P. Ostermeyer, “A cellular automaton model to describe the three-dimensional friction and wear mechanism of brake systems,” Wear, 263, Nos. 7-12, 1175-1188 (2007).

    Article  Google Scholar 

  18. A. Mazahery and M. O. Shabani, “Assistance of novel artificial intelligence in optimization of aluminum matrix nanocomposite by genetic algorithm,” Appl. Optics, 43, No. 13, 5279-5285 (2012).

    CAS  Google Scholar 

  19. M. O. Shabani, M. R. Rahimipour, and A. A. Tofigh, “Refined microstructure of compo cast nanocomposites: the performance of combined neuro-computing, fuzzy logic and particle swarm techniques,” Neural Computing & Applications, 26, No. 4, 899-909 (2014).

    Article  Google Scholar 

  20. M. O. Shabani, A. Mazahery, M. R. Rahimipour, The most accurate ANN learning algorithm for FEM prediction of mechanicsal performance of alloy A356, KovoveMaterialy, 2012, 50(1):25-31.

  21. A. Ramil, A. J. López, and A. Yáñez, “Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS),” Appl. Physics A, 92, No. 1, 197-202 (2008).

    Article  CAS  Google Scholar 

  22. A. Mazahery and M. O. Shabani, “Development of the principle of simulated natural evolution in searching for a more superior solution: Proper selection of processing parameters in AMCs,” Powder Technol., 245, No. 8, 146-155 (2013).

    Article  CAS  Google Scholar 

  23. U. Aich and S. Banerjee, “Modeling of EDM responses by support vector machine regression with parameters selected by particle swarm optimization,” Appl. Math. Modelling, 38, No. 11-12, 2800-2818 (2014).

    Article  Google Scholar 

  24. M. O. Shabani and A. Mazahery, “Computational modeling of cast aluminum 2024 alloy matrix composites: Adapting the classical algorithms for optimal results in finding multiple optima,” Powder Technol., 249, No. 2, 77-81 (2013).

    Article  CAS  Google Scholar 

  25. C. Ferreira, “Gene expression programming: a new adaptive algorithm for solving problems,” Computer Sci., No. 2. 87-129 (2001).

  26. C. Ferreira, Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, Springer Ebooks (2006).

  27. A. Baykasoğlu, H. Güllü, and H. Çanakçı, “Prediction of compressive and tensile strength of limestone via genetic programming,” Expert Systems with Applications, 35, No. 1-2, 111-123 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. C. Huang.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 54, No. 5, pp. 995-1006, September-October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Huang, Z.C., Luo, N. et al. Investigation of Carbon Fiber- and Wollastonite-Filled Graphite/Asphalt/Cu Composite Materials Using the Gene Expression Programming. Mech Compos Mater 54, 685–694 (2018). https://doi.org/10.1007/s11029-018-9776-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-018-9776-y

Keywords

Navigation