Skip to main content

Enhancement of the Mechanical Properties of a Polylactic Acid/Flax Fiber Biocomposite by WPU, WPU/Starch, and TPS Polyurethanes Using Coupling Additives

This work is addressed to the synthesis of bio-based polymers and investigation of their application in a flax-fiber-reinforced polylactic acid. Polyurethane polymers were synthesized from polyphenyl-methane-diisocyanate, poly (ethylene oxide) glycol, and ricinoleic acid, and their structure was examined by the Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. It was established that the introduction of flax fibers and different compatibilizers into the polymers improved their mechanical properties. A vinyl-trimetoxy-silane and polyalkenyl-polymaleic-anhydride derivative with a high acid number produced the best effect on the properties, but samples without additives had the highest water absorption capacity. SEM micrographs showed a good correlation between the morphology of fracture structure of the composites and the mechanical properties of flax fibers.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4


  1. 1.

    M. S. Lopes, A. L. Jardini, and R. M. Filho, “Synthesis and characterizations of pPoly (lactic acid) by ring-opening polymerization for biomedical applications,” Chem. Eng. Trans., 38, 331-336 (2014).

    Google Scholar 

  2. 2.

    F. S. Guner, Y. Yag, and A. T. Erciyes, “Polymers from triglyceride oils,” Prog. Polym. Sci. 31, 633-670 (2006).

    Article  Google Scholar 

  3. 3.

    J. C. Ronda, G. Lligadas, M.Galià, and V. Cádiz, “Vegetable oils as platform chemicals for polymer synthesis,” Eur. J. Lipid Sci. Technol., 113, 46-58 (2011).

    Article  Google Scholar 

  4. 4.

    G. T. Howard, “Biodegradation of polyurethane: A review,” Int. Biodeter. Biodegr., 49, 245-252 (2002).

    Article  Google Scholar 

  5. 5.

    C. W. Chang and K. T. Lu, “Natural castor oil based 2-package waterborne polyurethane wood coatings,” Progress Org. Coat., 75, 35-443 (2012).

    Article  Google Scholar 

  6. 6.

    J. Zou, F. Zhang, J. Huang, P.R. Chang, Z. Su, and J. Yu, “Effects of starch nanocrystals on structure and properties of waterborne polyurethane-based composites,” Carbohyd. Polym., 85, 824-831 (2011).

    Article  Google Scholar 

  7. 7.

    T. Travinskaya, Yu. Savelyev, and E. Mishchuk, “Waterborne polyurethane-based starch-containing materials: Preparation, properties and study of degradability,” Polym. Degrad. Stabil., 101, 102-108 (2014).

    Article  Google Scholar 

  8. 8.

    Y. Wang, H. Tian, and L. Zhang, “Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane,” Carbohyd. Polym., 80, 665-671(2010).

    Article  Google Scholar 

  9. 9.

    Y. Lu, L. Tighzert, P. Dole, and D. Erre, “Preparation and properties of starch thermoplastics modified with waterborne polyurethane from renewable resources,” Polymer, 46, 9863-9870 (2005).

    Article  Google Scholar 

  10. 10.

    S. Oprea, “Dependence of fungal biodegradation of PEG/castor oil-based polyurethane elastomers on the hard-segment structure,” Polym. Degrad. Stabil., 95, 2396-2404 (2010).

    Article  Google Scholar 

  11. 11.

    S. J. Lee and B. K. Kim, “Covalent incorporation of starch derivative into waterborne polyurethane for biodegradability,” Carbohyd. Polym., 87, 1803-1809 (2011).

    Article  Google Scholar 

  12. 12.

    H. Sardon, L. Irusta, A. González, and M. J. Fernández-Berridi, “Waterborne hybrid polyurethane coatings functionalized with (3-aminopropyl)triethoxysilane: Adhesion properties,” Prog. Org. Coat., 76, 1230-1235 (2013).

    Article  Google Scholar 

  13. 13.

    Z. Ge and Y. Luo, “Synthesis and characterization of siloxane-modified two-component waterborne polyurethane,” Prog. Org. Coat., 76, 1522-1526 (2013).

    Article  Google Scholar 

  14. 14.

    R. T. Darby and A. M. Kaplan, “Fungal susceptibility of polyurethanes,” Appl. Microbiol., 16, 900-905 (1968).

    Google Scholar 

  15. 15.

    H. Yeganeh and P. Hojati-Talemi, “Preparation and properties of novel biodegradable polyurethane networks based on castor oil and poly(ethylene glycol),” Polym. Degrad. Stabil., 92, 480-489 (2007).

    Article  Google Scholar 

  16. 16.

    M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, “Chemical treatments on plant-based natural fiber reinforced polymer composites: An overview,” Composites: Part B-Eng. 43, 2883-2892 (2012).

    Article  Google Scholar 

  17. 17.

    M. A. L. Manchado, M. Arroyo, J. Biagiotti, and J. M. Kenny, “Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/flax fiber composites using maleic anhydride as a compatibilizer,” J. Appl. Polym. Sci., 90, 2170-2178 (2003).

    Article  Google Scholar 

  18. 18.

    L. Y. Mwaikambo and M. P. Ansell, “The effect of chemical treatment on the properties of hemp, sisal jute and kapok for composite reinforcement,” Die Angewandte Makromolekulare Chemie, 272, 108-116 (1999).

    Article  Google Scholar 

  19. 19.

    O. Faruk, A. K. Bledzki, Hans-Peter Fink, and Mohini Sain, “Biocomposites reinforced with natural fibers: 2000-2010,” Prog. Polym. Sci., 37, 1552-1596 (2012).

    Article  Google Scholar 

  20. 20.

    R. Kumar; M. K. Yakabu; and R. D. Anandjiwala, “Effect of montmorillonite clay on flax fabric reinforced poly lactic acid composites with amphiphilic additives,” Composites: Part A-Appl Sci., 41, 1620-1627 (2010).

    Article  Google Scholar 

  21. 21.

    A. Le Duigou, I. Pillin, A. Bourmaud, P. Davies, and C. Baley, “Effect of recycling on mechanical behaviour of biocompostable flax/poly(L lactide) composites,” Composites: Part A-Appl S., 39, 1471-1478 (2008).

    Article  Google Scholar 

  22. 22.

    B. Bax and J. Müssig, “Impact and tensile properties of PLA/Cordenka and PLA/flax composites,” Compos. Sci. Technol., 68, 1601-1607 (2008).

    Article  Google Scholar 

  23. 23.

    N. Miskolczi, H. Szakacs, V. Sedlarik, P. Kucharczyk, and E. Riegel, “Production of acrylonitrile butadiene styrene/high-density polyethylene composites from waste sources by using coupling agents,” Mech. Compos. Mater., 50, No. 3, 377-386 (2014).

    Article  Google Scholar 

  24. 24.

    P. Kucharczyk, V. Sedlarik, N. Miskolczi, H. Szakacs, and T. Kitano, “Properties enhancement of partially biodegradable polyamide/polylactide blends through compatibilization with novel polyalkenyl-poly-maleic-anhydride-based additives,” J. Reinf. Plast. Comp., 31, 189-202 (2012).

    Article  Google Scholar 

  25. 25.

    H.-Y. Mi, M. R. Salick, X. Jing, B. R. Jacques, W. C. Crone, X.-F. Peng, and L.-S. Turng, “Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding,” Mater. Sci. Eng. C Mater. Biol. Appl. C, 33, 4767-4776 (2013).

    Article  Google Scholar 

  26. 26.

    B. Ayana, S. Suin, and B. B. Khatua, “Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid) (PLA)/clay nanocomposites using unmodified nanoclay,” Carbohyd. Polym., 110, 430-439 (2014).

    Article  Google Scholar 

Download references


V. Sedlarik and P. Kuchraczyk would like to acknowledge the financial support provided by the Ministry of Education, Youth, and Sports of the Czech Republic (Grants Nos. LE12002 and LO1504).

Author information



Corresponding author

Correspondence to N. Miskolczi.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 53, No. 6, pp. 1137-1152, November-Decemer, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miskolczi, N., Sedlarik, V., Kucharczyk, P. et al. Enhancement of the Mechanical Properties of a Polylactic Acid/Flax Fiber Biocomposite by WPU, WPU/Starch, and TPS Polyurethanes Using Coupling Additives. Mech Compos Mater 53, 791–800 (2018).

Download citation


  • waterborne polyurethane
  • castor oil
  • starch
  • coupling
  • biodegradation