Mechanics of Composite Materials

, Volume 53, Issue 5, pp 631–644 | Cite as

Failure Analysis of Carbon Nanotubes with a Stone–Wales Defect Using Nonlinear Finite-Element Methods

  • A. H. EsbatiEmail author
  • S. Irani

A nonlinear finite-element model is presented by incorporating a modified Morse potential function to study the mechanical properties of armchair, zigzag, and chiral carbon nanotubes (CNTs). Different types of Stone–Wales defects in them are considered, and all they were found to reduce the tensile mechanical characteristics of CNTs.


single-wall carbon nanotubes mechanical properties Stone–Wales defect nonlinear finite-element methods 


  1. 1.
    S. Iijima, “Helical microtubules of graphitic carbon,” Nature. 354 (6348); 56-58 (1991).CrossRefGoogle Scholar
  2. 2.
    E. T. Thostenson, Z. Ren, and T.-W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review,” Compos. Sci. Technol., 61, No. 13, 1899-1912 (2001).CrossRefGoogle Scholar
  3. 3.
    Q. Jiang, X. Wang, et al., “Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites,” Composites: Part B: Eng., 56, 408-412 (2014).CrossRefGoogle Scholar
  4. 4.
    M. M. Shokrieh and R. Rafiee, “A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites,” Mech. Compos. Mater., 46, No. 2, 155-172 (2010).CrossRefGoogle Scholar
  5. 5.
    T. Ebbesen and P. Ajayan, “Large-scale synthesis of carbon nanotubes,” Nature, 358 (6383); 220-222 (1992).CrossRefGoogle Scholar
  6. 6.
    A. Thess, R. Lee, et al., “Crystalline ropes of metallic carbon nanotubes,” Sci. AAAS-Weekly Paper Edition, 273 (5274); 483-487 (1996).Google Scholar
  7. 7.
    A. Stone and D. Wales, “Theoretical studies of icosahedral C< sub> 60</sub> and some related species,” Chem.l Phys. Lett., 128, No. 5, 501-503 (1986).CrossRefGoogle Scholar
  8. 8.
    J. C. Burgos, E. Jones, and P. B. Balbuena, “Dynamics of topological defects in single-walled carbon nanotubes during catalytic growth,” J. of Physical Chemistry C., 118, No. 9, 4808-4817 (2014).CrossRefGoogle Scholar
  9. 9.
    X. Wang, K. Wang, et al., “Reactivity of the interior surface of (5,5) single-walled carbon nanotubes with and without a Stone–Wales defect,” Computational and Theoretical Chemistry. 1027 (0), 160-164 (2014).CrossRefGoogle Scholar
  10. 10.
    A. H. Esbati and S. Irani, “Probabilistic mechanical properties and reliability of carbon nanotubes,” Archives of Civil and Mechanical Engineering.
  11. 11.
    P. C. Watts, W.-K. Hsu, et al., “Are bulk defective carbon nanotubes less electrically conducting?”. Nano Lett.,. 3, No. 4, 549-553 (2003).CrossRefGoogle Scholar
  12. 12.
    N. Pierard, A. Fonseca, et al., “Production of short carbon nanotubes with open tips by ball milling,” Chem. Phys. Lett., 335, No. 1, 1-8 (2001).CrossRefGoogle Scholar
  13. 13.
    Z. Spitalsky, D. Tasis, et al., “Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties,” Progress in Polymer Sci.,. 35, No. 3, 357-401 (2010).CrossRefGoogle Scholar
  14. 14.
    Y. Kim and H. Kim, “Structural modifications of multiwalled carbon nanotubes and their effects on optical properties,” J. Nanoparticle Res., 16, No. 1, 1-11 (2013).Google Scholar
  15. 15.
    P. Zhang, Y. Huang, et al., “The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials,” Int. J. Solids and Structures, 39 No. 13, 3893-3906 (2002).CrossRefGoogle Scholar
  16. 16.
    A. H. Esbati and S. Irani, “Mechanical properties and fracture analysis of functionalized carbon nanotube embedded by polymer matrix,” Aerospace Sci. Technol.,. 55, 120-130 (2016).CrossRefGoogle Scholar
  17. 17.
    Y. Hu, O. A. Shenderova, et al., “Carbon nanostructures for advanced composites,” Reports on Progress in Physics, 69, No. 6, 1847 (2006).Google Scholar
  18. 18.
    A. H. Esbati and S. Irani, “Multiscale modeling of fracture in polymer nanocomposite reinforced by intact and functionalized CNTs,” J. Sci. Technol. Compos., (2016).Google Scholar
  19. 19.
    T. Chang and H. Gao, “Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model,” J. Mech. Phys. Solids, 51, No. 6, 1059-1074 (2003).CrossRefGoogle Scholar
  20. 20.
    A. Fereidoon, R. Rafiee, and R. M. Moghadam, “A modal analysis of carbon-nanotube-reinforced polymer by using a multiscale finite-element method,” Mech. Compos. Mater., 49, No. 3, 325-332 (2013).CrossRefGoogle Scholar
  21. 21.
    K.-T. Lau, C. Gu, and D. Hui, “A critical review on nanotube and nanotube/nanoclay related polymer composite materials,” Composites: Part B, Eng., 37, No. 6, 425-436 (2006).CrossRefGoogle Scholar
  22. 22.
    M. Meo and M. Rossi, “Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling,” Compos. Sci. Technol., 66, No. 11, 1597-1605 (2006).CrossRefGoogle Scholar
  23. 23.
    M. Meo and M. Rossi, “Tensile failure prediction of single wall carbon nanotube,” Engineering Fracture Mechanics, 73, No. 17, 2589-2599 (2006).CrossRefGoogle Scholar
  24. 24.
    Q.-S. Yang, B.-Q. Li, et al., “Modeling the mechanical properties of functionalized carbon nanotubes and their composites: design at the atomic level,” Advances in Condensed Matter Physics, 14, Atricle No. 482056 (2014).Google Scholar
  25. 25.
    P. A. M. Lopes, H. M. Gomes, and A. M. Awruch, “Reliability analysis of laminated composite structures using finite elements and neural networks,” Compos. Struct., 92, No. 7, 1603-1613 (2010).CrossRefGoogle Scholar
  26. 26.
    A. Kontsos and J. A. Cuadra, Multiscale Stochastic Finite Elements Modeling of Polymer Nanocomposites, in Modeling and Prediction of Polymer Nanocomposite Properties. Wiley-VCH Verlag GmbH & Co. KGaA, 143-168 (2013).Google Scholar
  27. 27.
    M. M. Shokrieh and R. Rafiee, “Stochastic multi-scale modeling of CNT/polymer composites,” Comput. Mater. Sci., 50, No. 2, 437-446 (2010).CrossRefGoogle Scholar
  28. 28.
    C. Li and T.-W. Chou, “A structural mechanics approach for the analysis of carbon nanotubes,” Int. J. Solids and Struct., 40, No. 10, 2487-2499 (2003).CrossRefGoogle Scholar
  29. 29.
    M. Zidour, T. Daouadji, et al., “Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory,” Mech. Compos. Mater., 50, No. 1, 95-104 (2014).CrossRefGoogle Scholar
  30. 30.
    G. M. Odegard, T. S. Gates, et al., Equivalent-continuum modeling with application to carbon nanotubes. Citeseer, NASA/TM-2002-211454, Hampton, VA: NASA Langley Research Center, 2002.Google Scholar
  31. 31.
    H. Jiang, P. Zhang, et al., “The effect of nanotube radius on the constitutive model for carbon nanotubes,” Comput. Mater. Sci., 28. No. 3, 429-442 (2003).CrossRefGoogle Scholar
  32. 32.
    X. Lu and Z. Hu, “Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling,” Composites: Part B, Eng., 43, No. 4, 1902-1913 (2012).CrossRefGoogle Scholar
  33. 33.
    T. Belytschko, S. Xiao, et al., “Atomistic simulations of nanotube fracture,” Physical Review, B, 65, No. 23, 235430 (2002).CrossRefGoogle Scholar
  34. 34.
    K. P. Saffar, N. Jamilpour, et al., “A finite element model for estimating Young’s modulus of carbon nanotube reinforced composites incorporating elastic cross-links,” Matrix, 1, 9-11 (2008).Google Scholar
  35. 35.
    K. I. Tserpes and P. Papanikos, “Finite element modeling of single-walled carbon nanotubes,” Composites: Part B, Eng., 36, No. 5. 468-477 (2005).CrossRefGoogle Scholar
  36. 36.
    R. Maleki Moghadam, S. A. Hosseini, and M. Salehi, “The influence of Stone–Thrower–Wales defect on vibrational characteristics of single-walled carbon nanotubes incorporating Timoshenko beam element,” Physica E: Low-dimensional Systems and Nanostructures, 62, 80-89 (2014).CrossRefGoogle Scholar
  37. 37.
    K. Tserpes and P. Papanikos, “The effect of Stone–Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes,” Compos. Struct., 79, No. 4, 581-589 (2007).CrossRefGoogle Scholar
  38. 38.
    A. H. Esbati, S. Irani, and H. Moosazadeh, “Instability characteristics of a free-free multi-stepped Timoshenko beam with concentrated masses subjected to follower force,” Transactions of the Japan Soc. for Aeronautical and Space Sci., 55, No. 1, 12-20 (2012).CrossRefGoogle Scholar
  39. 39.
    M.-F. Yu, O. Lourie, et al., “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, 287 (5453), 637-640 (2000).CrossRefGoogle Scholar
  40. 40.
    T. W. Tombler, C. Zhou, et al., “Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation,” Nature, 405 (6788), 769-772 (2000).CrossRefGoogle Scholar
  41. 41.
    M. M. Shokrieh and R. Rafiee, “Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach,” Mater. Des., 31, No. 2, 790-795 (2010).CrossRefGoogle Scholar
  42. 42.
    J. Xiao, J. Staniszewski, and J. Gillespie Jr, “Fracture and progressive failure of defective graphene sheets and carbon nanotubes,” Compos. Struct., 88, No. 4, 602-609 (2009).CrossRefGoogle Scholar
  43. 43.
    L. Bian and H. Zhao, “Elastic properties of a single-walled carbon nanotube under a thermal environment,” Compos. Struct., 121, 337-343 (2015).CrossRefGoogle Scholar
  44. 44.
    M. Rossi and M. Meo, “On the estimation of mechanical properties of single-walled carbon nanotubes by using a molecular-mechanics based FE approach,” Compos. Sci. Technol., 69, No. 9, 1394-1398 (2009).CrossRefGoogle Scholar
  45. 45.
    T. Natsuki, K. Tantrakarn, and M. Endo, “Prediction of elastic properties for single-walled carbon nanotubes,” Carbon, 42, No. 1, 39-45 (2004).CrossRefGoogle Scholar
  46. 46.
    B. Wenxing, Z. Changchun, and C. Wanzhao, “Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics,” Physica B: Condensed Matter., 352, Nos. 1-4, 156-163 (2004).CrossRefGoogle Scholar
  47. 47.
    J. R. Xiao, B. A. Gama, and J. W. Gillespie Jr, “An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes,” Int. J. Solids and Struct., 42, Nos. 11-12, 3075-3092 (2005).Google Scholar
  48. 48.
    Q. Lu and B. Bhattacharya, “Fracture resistance of zigzag single walled carbon nanotubes,” Nanotechnology, 17, No. 5, 1323 (2006).CrossRefGoogle Scholar
  49. 49.
    J. Zhu, M. He, and F. Qiu, “Effect of vacancy defects on the Young’s modulus and fracture strength of graphene. A molecular dynamics study,” Chinese J. of Chemistry, 30, No. 7, 1399-1404 (2012).CrossRefGoogle Scholar
  50. 50.
    C. Baykasoglu, M. Kirca, and A. Mugan, “Nonlinear failure analysis of carbon nanotubes by using molecular-mechanics based models,” Composites: Part B, Eng., 50, 150-157 (2013).CrossRefGoogle Scholar
  51. 51.
    J. Xiao, J. Staniszewski, and J. Gillespie, “Tensile behaviors of graphene sheets and carbon nanotubes with multiple Stone–Wales defects,” Mater. Sci. Eng. A., 527, No. 3, 715-723 (2010).CrossRefGoogle Scholar
  52. 52.
    C. Fan, Y. Liu, and C. Hwu, “Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes,” Appl. Phys. A, 95, No. 3, 819-831 (2009).CrossRefGoogle Scholar
  53. 53.
    J. M. Wernik and S. A. Meguid, “Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes,” Acta Mechanica, 212, Nos. 1-2, 167-179 (2010).Google Scholar
  54. 54.
    E. Ertekin, D. Chrzan, and M. S. Daw, “Topological description of the Stone–Wales defect formation energy in carbon nanotubes and graphene,” Physical Review B, 79, No. 15, 155421 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Aerospace facultyK. N. Toosi University of TechnologyTehranIran

Personalised recommendations