Skip to main content
Log in

Determination of the Mode I Interlaminar Fracture Toughness by Using a Nonlinear Double-Cantilever Beam Specimen

  • Published:
Mechanics of Composite Materials Aims and scope

The aim of this study is estimation of the effect of large deflections of a double-cantilever beam (DCB) on the accuracy of determination of the mode I interlaminar fracture toughness GIc of layered composites by using the nonlinear theory of bending of beams. The differential equation of the deflection curve of arm of the DCB specimen in the natural form was used to analyze the strain energy of the specimen and its strain energy release rate GI upon propagation of delamination under the action of cleavage forces at the ends of cantilevers. An algorithm for calculating the strain energy and its release rate in the DCB specimens is realized in the form of a MATLAB code. An experimental study was carried out on DCB specimens of a highly flexible carbon/epoxy laminate. The validity of the nonlinear model developed is demonstrated. The standard methods used to determine GIc are refined for the case of highly flexible specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. G. Williams, “On the calculation of energy release rate for cracked laminates,” Int. J. Frac., 36, 101–119 (1988).

    Article  Google Scholar 

  2. J. G. Williams, “Large displacement and end block effects in the DCB interlaminar test in modes I and II,” J. Compos. Mater., 21, No. 4, 330–347 (1987).

    Article  Google Scholar 

  3. S. Hashemi, A. J. Kinloch, and J. G. Williams, “Corrections needed in double-cantilever beam tests for assessing the interlaminar failure of fibre-composites,” J. Mater. Sci. Lett., 8, No. 2, 125–129 (1989).

    Article  Google Scholar 

  4. ASTM D5528. Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites (1994).

  5. Fiber-Reinforced Plastic Composites - Determination of Mode I Interlaminar Fracture Toughness, GIC, for Unidirectionally Reinforced Materials, 15024, Int. Organization for Standardization, ISO (2001).

  6. J. G. Williams, “End corrections for orthotropic DCB specimens,” Compos. Sci. Technol., 35, No. 4, 367–376 (1989).

    Article  Google Scholar 

  7. B. N. Rao and A. R. Acharya, “Evaluation of fracture energy, GIc, using a double cantilever beam fibre composite specimen,” Eng. Fract. Mech., 51, No. 2, 317–322 (1995).

    Article  Google Scholar 

  8. B. N. Rao and A. R. Acharya, “Maximum load at the initiation of delamination growth in a double cantilever beam specimen,” Zeitschrift fuer Metallkunde, 86, No. 6, 428–433 (1995).

    Google Scholar 

  9. V. A. Franklin and T. Christopher, “Fracture energy estimation of DCB specimens made of glass/epoxy: An experimental study,” Adv. Mater. Sci. Eng., ID 412601, 1–7 (2013).

  10. Z. Suo, G. Bao, and B. Fan, “Delamination R-curve phenomena due to damage,” J. Mech. Phys. Solids, 40, 1–16 (1992).

    Article  Google Scholar 

  11. D. Kaute, H. R. Shercliff, and M. F. Ashby, “Modeling of fibre bridging and toughness of ceramic matrix composites,” Scripta Metall. Mater., 32, 1055–1060 (1995).

    Article  Google Scholar 

  12. A.-M. Yan, E. Marechal, and H. Nguyen-Dang, “A finite element model of mixed-mode delamination in laminated composites with an R-curve effect,” Compos. Sci. Technol., 61, 1413–1427 (2001).

    Article  Google Scholar 

  13. S. Hashemi, J. Kinloch, and J. G. Williams, “Mechanics and mechanisms of delamination in a polyether sulphone-fibre composites,” Compos. Sci. Technol., 37, 429–462 (1990).

    Article  Google Scholar 

  14. V. Tamuzs, S. Tarasovs, and U. Vilks, “Progressive delamination and fiber bridging modeling in double cantilever beam composite specimen,” Eng. Fract. Mech., 68, 513–525 (2001).

    Article  Google Scholar 

  15. K.-S. Sohn, S. Lee, and S. Baik, “Analysis of bridging stress effect of polycrystalline alumina using double cantilever beam method,” Acta Mater., 45, 3445–3457 (1997).

    Article  Google Scholar 

  16. J. E. Lindhagen and L. A. Berglund, “Application of bridging-law concepts to short-fibre composites. Part 1: DCB test procedures for bridging law and fracture energy,” Compos. Sci. Technol., 60, 871–883 (2000).

    Article  Google Scholar 

  17. S. O. Fernberg and L. A. Berglund, “Bridging law and toughness characterization of CSM and SMC composites,” Compos. Sci. Technol., 61, 2445–2454 (2001)

    Article  Google Scholar 

  18. A. Szekreґnyes and J. Uj, “Advanced beam model for fibre-bridging in unidirectional composite double-cantilever beam specimens,” Eng. Fract. Mech., 72, 2686–2702 (2005).

    Article  Google Scholar 

  19. F. Nilsson, “Large displacements aspects on fracture testing with double cantilever beam specimens,” Int. J. Fract., 139, 305–311 (2006).

    Article  Google Scholar 

  20. V. Tamužs, S. Tarasovs, U. Vilks, and I. Rumkovska, “Development of test methods for adhesion measurements of flexible elastic materials,” Proc. ECCM-13 (2008). ULR: <http://www.escm.eu.org/docs/eccm13/0811.pdf> (subm. date: 12.03.2015)

  21. R. G. Boeman, D. Erdman, L. Klett, and R. Lomax, “A practical test method for mode I fracture toughness of adhesive joints with dissimilar substrates,” SAMPE-ACCE-DOE Adv. Compos. Conf., Detroit, MI, September 27–28 (1999). ULR: <http: // web.ornl.gov / ~ webworks/cpr/pres/104246.pdf> (subm. date: 10.04.2015)

  22. C. Prasanth, S. Ravindranath, A. Samraj, and T. Manikandan, “Mode-I fracture analysis of thermally aged of glass and glass-carbon hybrid composites,” Int. J. Innov. Technol. Explor. Eng., 3, No. 10, 84–89 (2014).

    Google Scholar 

  23. V. Pavelko, “Behavior of thin-film-type delamination of layered composite in post-buckling,” Adv. Mater. Research., 774–776, 1312–1321 (2013).

    Article  Google Scholar 

  24. V. Pavelko, “Analytical 1D model of delamination development and strength of layered composite beam in postbuckling,” Key Eng. Mater., 627, 325–328 (2014).

    Article  Google Scholar 

  25. V. Pavelko, “Application of the nonlinear model of a beam for investigation of interlaminar fracture toughness of layered composite,” Key Eng. Mater., 665 , 273–276 (2015).

    Article  Google Scholar 

  26. S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, McGraw-Hill, New York (1961), Chap. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Pavelko.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 52, No. 3, pp. 491-`506 , May-June, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavelko, V., Lapsa, K. & Pavlovskis, P. Determination of the Mode I Interlaminar Fracture Toughness by Using a Nonlinear Double-Cantilever Beam Specimen. Mech Compos Mater 52, 347–358 (2016). https://doi.org/10.1007/s11029-016-9587-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-016-9587-y

Keywords

Navigation