Mechanics of Composite Materials

, Volume 50, Issue 6, pp 789–800 | Cite as

Moisture Sorption of Epoxy Composites Reinforced with Aligned and Notched Triangular Bars

  • B. B. PajaritoEmail author
  • M. Kubouchi

Moisture diffusion in acid anhydride-cured epoxy matrices reinforced with aligned and notched triangular bars has been investigated. The reinforcing bars were first treated with molded and cured vinyl ester resin before their manual assembling. Gravimetric experiments were performed on epoxy composites fully immersed in water at 80°C for 1200 h. Weight uptake curves showed that the composites had suffered limited material degradation after an initial stage of moisture sorption; another sorption stage was observed after this degradation phase. Based on the initial sorption stage, the moisture diffusion behavior in composites is found to be independent of the orientation and alignment of reinforcing bars. This result is confirmed by transient 3D finite-element simulations. The numerical results are in close agreement with experimental data for the initial sorption stage.


polymer composite notched triangular bar diffusion finite-element simulation moisture sorption 



The authors would like to acknowledge the Hitachi Scholarship Foundation for the financial support. The authors would also like to express their deepest gratitude to Dr. Saiko Aoki for the procurement of materials and the experimental setup, and to Dr. Hideki Sembokuya for the fabrication of metallic molds for curing and forming notched triangular vinyl ester bars.


  1. 1.
    G. D. Moggridge, N. K. Lape, C. Yang, and E. L. Cussler, “Barrier films using flakes and reactive additives,” Prog. Org. Coat., 46, No. 4, 231-240 (2003).CrossRefGoogle Scholar
  2. 2.
    N. K. Lape, E. Nuxoll, E. L. Cussler, “Polydisperse flakes in barrier films,” J. Membr. Sci., 236, No. 1-2, 29-37 (2004).CrossRefGoogle Scholar
  3. 3.
    X. Chen and T. Papathanasiou, “Barrier properties of flake-filled membranes: review and numerical evaluation,” J. Plast. Film. Sheet., 23, No. 4, 319-346 (2007).CrossRefGoogle Scholar
  4. 4.
    E. L. Cussler, “Diffusion barriers,” Diffusion Fundamentals, 6, 72.1-72.12 (2007).Google Scholar
  5. 5.
    D. M. Eitzmann, R. Melkote, and E. L. Cussler, “Barrier membranes with tipped impermeable flakes,” AIChEJ, 42, No. 1, 2-9 (1996).CrossRefGoogle Scholar
  6. 6.
    Y. Ly and Y. Cheng, “Diffusion in heterogeneous media containing impermeable domains arranged in parallel arrays of variable orientation,” J. Membr. Sci., 133, No. 2, 207-215 (1997).CrossRefGoogle Scholar
  7. 7.
    J. D. White and E. L. Cussler, “Anisotropic transport in water swollen flake-filled membranes,” J. Membr. Sci., 278, No. 1-2, 225-231 (2006).CrossRefGoogle Scholar
  8. 8.
    B. B. Pajarito, M. Kubouchi, T. Sakai, and S. Aoki, “Effective diffusion in flake-polymer composites with accelerated interphase transport,” J. Soc. Mater. Sci. Jpn, 61, 860-866 (2012).CrossRefGoogle Scholar
  9. 9.
    B. B. Pajarito, M. Kubouchi, and S. Aoki, “Investigation of water diffusion in triangular bar-reinforced composites,” Adv. Compos. Lett., 21, No. 6, 137-144 (2012).Google Scholar
  10. 10.
    B. B. Pajarito, M. Kubouchi, and S. Aoki, “Modeling anisotropic water transport in polymer composite reinforced with aligned triangular bars,” Bull. Mater. Sci., Advance online publication,
  11. 11.
    B. B. Pajarito and M. Kubouchi, “Kinetic model study of moisture sorption-desorption-resorption in triangular-shaped vinyl ester filler/epoxy composites,” J. Mater. Sci., 49, No. 2, 886-896 (2014).CrossRefGoogle Scholar
  12. 12.
    C. Geuzaine and J. Remacle, “Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities,” Int. J. Numer. Meth. Eng., 79, No. 11, 1309-1331 (2009).CrossRefGoogle Scholar
  13. 13.
    A. R. Berens and H. B. Hopfenberg, “Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters,” Polymer, 19, No. 5, 489-496 (1978).CrossRefGoogle Scholar
  14. 14.
    P. Dular, C. Geuzaine, A. Genon, and W. Legros, “An evolutive software environment for teaching finite element methods in electromagnetism,” IEEE T. Magn., 35, No. 3, 1682-1685 (1999).CrossRefGoogle Scholar
  15. 15.
    Y. W. Kwon and H. Bang, The Finite Element Method Using Matlab, CRC Press, Inc., Boca Raton, Florida (2000).Google Scholar
  16. 16.
    J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford (1975).Google Scholar
  17. 17.
    C. Yang, W. Smyrl, and E. L. Cussler, “Flake alignment in composite coatings,” J. Membr. Sci., 231, No. 1-2, 1-12 (2004).CrossRefGoogle Scholar
  18. 18.
    W. Falla, M. Mulski, and E. L. Cussler, “Estimating diffusion through flake-filled membranes,” J. Membr. Sci., 119, No. 1, 129-138 (1996).CrossRefGoogle Scholar
  19. 19.
    J. DeRocher, B. Gettelfinger, J. Wang, E. Nuxoll, and E. L. Cussler, “Barrier membranes with different sizes of aligned flakes,” J. Membr. Sci., 254, No. 1-2, 21-30 (2005).CrossRefGoogle Scholar
  20. 20.
    E. L. Cussler, S. Hughes, W. Ward, and R. Aris, “Barrier membranes,” J. Membr. Sci., 38, No. 2, 161-174 (1988).CrossRefGoogle Scholar
  21. 21.
    B. B. Pajarito and M. Kubouchi, “Flake-filled polymers for corrosion protection,” J. Chem. Eng. Jpn., 46, No. 1, 18-26 (2013).CrossRefGoogle Scholar
  22. 22.
    V. Alvarez, A. Vazquez, and O. de la Osa, “Cyclic water absorption behaviour of glass-vinyl ester and glass-epoxy composites,” J. Compos. Mater., 41, No. 10, 1275-1289 (2007).CrossRefGoogle Scholar
  23. 23.
    B. B. Pajarito, M. Kubouchi, H. Tomita, and S. Aoki, “Microstructural dependency of diffusion in glass flake-reinforced vinyl ester resins,” AJChE, 12, No. 1, 11-19 (2012).Google Scholar
  24. 24.
    B. B. Pajarito, M. Kubouchi, H. Tomita, and T. Sakai, “Absorption and wet retention of flexural properties of E-glass flake/epoxy composites under corrosive environment,” Mater. Sci. Tech. Jpn., 49, No. 1, 32-38 (2012).Google Scholar
  25. 25.
    D. A. Bond and P. A. Smith, “Modeling the transport of low-molecular-weight penetrants within polymer matrix composites,” Appl. Mech. Rev., 59, 249-268 (2006).CrossRefGoogle Scholar
  26. 26.
    Y. J. Weitsman and Y. J. Guo, “A correlation between fluid-induced damage and anomalous fluid sorption in polymeric composites,” Compos. Sci. Tech., 62, 889-908 (2002).CrossRefGoogle Scholar
  27. 27.
    A. L. Pomerantsev, “Phenomenological modeling of anomalous diffusion in polymers”, J. Appl. Polym. Sci., 96, 1102-1114 (2005).CrossRefGoogle Scholar
  28. 28.
    Abastari, T. Sakai, H. Sembokuya, M. Kubouchi, and K. Tsuda, “The reciprocal influence between ion transport and degradation of PA66 in acid solution,” Polym. Degrad. Stabil., 91, 2595-2604 (2006).CrossRefGoogle Scholar
  29. 29.
    Abastari, T. Sakai, H. Sembokuya, M. Kubouchi, and K. Tsuda, “Study on permeation behavior and chemical degradation of PA 66 in acid solution,” Polym. Degrad. Stabil., 92, 379-388 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of the PhilippinesQuezon CityPhilippines
  2. 2.Department of Chemical EngineeringTokyo Institute of TechnologyTokyoJapan

Personalised recommendations