Skip to main content

Thermal Buckling Analysis of Functionally Graded Plates on an Elastic Foundation According to a Hyperbolic Shear Deformation Theory

A thermal buckling analysis of functionally graded thick rectangular plates on an elastic foundation is presented. The foundation is described by the Pasternak model. The formulation is based on a higher-order hyperbolic shear deformation theory. Two types of thermal loading, uniform temperature rise and graded temperature change across the thickness of the plates are considered, and their equilibrium and stability equations are obtained. The accuracy of the formulation presented is verified by comparing the results of numerical examples with data available in the literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. J. N. Reddy, “Analysis of functionally graded plates,” Int. J. for Numerical Methods in Engineering, 47, 663-684 (2000).

    Article  Google Scholar 

  2. P. Malekzadeh, “Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations,” Composite Structures, 89, 367-373 (2009).

    Article  Google Scholar 

  3. A. M. A. Neves, A. J. M. Ferreira, E. Carrera, C. M. C. Roque, M. Cinefra, R. M. N. Jorge, and C. M. M. Soares, “Bending of FGM plates by a sinusoidal plate formulation and collocation with radial basis functions,” Mechanics Research Communications, 38, No. 5, 368-371 (2011).

    Article  Google Scholar 

  4. N. El Meiche, A. Tounsi, N. Ziane, I. Mechab, and E. A. Adda.Bedia, “A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate,” Int. J. of Mech. Sci., 53, 237-247 (2011).

    Article  Google Scholar 

  5. E. Viola, L. Rosetti, and N. Fantuzzi, “Numerical investigation of functionally graded cylindrical shells and panels using the generalized unconstrained third order theory coupled with the stress recovery,” Compos. Struct., 94, No. 12, 3736-3758 (2012).

    Article  Google Scholar 

  6. Y. Ootao and Y. Tanigawa, “Three-dimensional transient thermal stresses of functionally graded rectangular plate due to partial heating,” J. of Thermal Stresses, 22, No. 1, 35-55 (1999).

    Article  Google Scholar 

  7. H. S. Shen, “Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments,” Int. J. of Mech. Sci., 44, No. 3, 561-584 (2002).

    Article  Google Scholar 

  8. S. S. Vel and R. C. Batra, “Three-dimensional analysis of transient thermal stresses in functionally graded plates,” Int. J. of Solids and Structures, 40, No. 25, 7181-7196 (2003).

    Article  Google Scholar 

  9. M. K. Apalak and R. Gunes, “Thermal residual stress analysis of Ni-Al2O3, Ni-TiO2, and Ti-SiC functionally graded composite plates subjected to various thermal fields,” J. of Thermoplastic Composite Materials, 18, No. 2, 119-152 (2005).

    Article  Google Scholar 

  10. R. Javaheri and M. R. Eslami, “Thermal buckling of functionally graded plates,” AIAA J., 40, No. 1, 162-169 (2002).

    Article  Google Scholar 

  11. K. S. Na and J. H. Kim, “Three-dimensional thermal buckling analysis of functionally graded materials,” Composites: Part B. Engineering, 35, No. 5, 429-437 (2004).

    Article  Google Scholar 

  12. H. Matsunaga, “Thermal buckling of functionally graded plates according to a 2D higher-order deformation theory,” Compos. Struct., 90, No. 1, 76-86 (2009).

    Article  Google Scholar 

  13. X. Zhao, Y. Y. Lee, and K. M. Liew, “Mechanical and thermal buckling analysis of functionally graded plates,” Compos. Struct., 90, No. 2, 161-171 (2009).

    Article  Google Scholar 

  14. A. M. Zenkour and M. Shoby, “Thermal buckling of functionally graded plates resting on elastic foundations using the trigonometric theory,” J. of Thermal Stresses, 34, No. 11, 1119-1138 (2011).

    Article  Google Scholar 

  15. M. Bodaghi and A. R. Saidi, “Thermoelastic buckling behavior of thick functionally graded rectangular plates,” Arch. of Appl. Mech., 81, No. 11, 1555-1572 (2011).

    Article  Google Scholar 

  16. A. M. A. Neves, A. J. M. Ferreira, E. Carrera, M. Cinefra, R. M. N. Jorge, and C. M. M. Soares, “Buckling analysis of sandwich plates with functionally graded skins using a new quasi-3D hyperbolic sine shear deformation theory and collocation with radial basis functions,” ZAMM, 92, No. 9, 749-766 (2012).

    Article  Google Scholar 

  17. T. Huu-Tai and C. Dong-Ho, “An efficient and simple refined theory for buckling analysis of functionally graded plates,” Appl. Math. Modeling, 36, 1008-1022 (2012).

    Article  Google Scholar 

  18. S. S. Akavci, “Buckling and free vibration analysis of symmetric and antisymmetric laminated composite plates on an elastic foundation,” J. of Reinforced Plastics and Composites, 26, 1907-1913 (2007).

    Article  Google Scholar 

  19. G. N. Praveen and J. N. Reddy, “Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates,” Int. J.of Solids and Structures, 35, No.33, 4457-4476 (1998).

    Article  Google Scholar 

  20. M. B. Bouiadjra, M. S. A. Houari, and A. Tounsi, “Thermal buckling of functionally graded plates according to a fourvariable refined plate theory,” J. of Thermal Stresses, 35, 677-694 (2012).

    Article  Google Scholar 

  21. D. O. Brush and B. O. Almroth, Buckling of Bars, Plates and Shells, McGraw-Hill, NewYork (1975).

    Google Scholar 

  22. R. Javaheri and M. R. Eslami, “Thermal buckling of functionally graded plates based on a higher order theory,” J. of Thermal Stresses, 25, 603-625 (2002).

    Article  Google Scholar 

  23. A. M. Zenkour and D. S. Mashat, “Thermal buckling analysis of ceramic-metal functionally graded plates,” Natural Sci., 2, No. 9, 968-978 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Akavci.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 50, No. 2, pp. 279-298, March-April, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akavci, S.S. Thermal Buckling Analysis of Functionally Graded Plates on an Elastic Foundation According to a Hyperbolic Shear Deformation Theory. Mech Compos Mater 50, 197–212 (2014). https://doi.org/10.1007/s11029-014-9407-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-014-9407-1

Keywords

  • functionally graded plates
  • shear deformation theory
  • elastic foundation
  • thermal buckling