Skip to main content

A Finite-Element Model for the Lateral Stiffness and Vibration Characteristics of RС Shear Walls Strengthened with Composite Sheets: Creep and the Shrinkage Effect

The effect of creep and shrinkage of reinforced concrete (RC) shear walls, strengthened with thin composite sheets, on their static and dynamic behavior is investigated. A finite-element model for their lateral stiffness and vibration characteristics is presented. Several test problems are examined to demonstrate the accuracy and effectiveness of the method proposed. Numerical results are obtained for four nonuniform distributions of graphite and boron fibers in epoxy matrices, and they demonstrate the significance of time-dependent effects on the lateral displacements and frequencies of the structures considered.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    F. Ghrib and H. Mamedov, “Period formulate of shear wall buildings with flexible bases,” Earthquake Engineering and Structural Dynamics, J. of Appl. Mechanics, 33, 295–314 (2004).

    Article  Google Scholar 

  2. 2.

    G. Q. Li and B. S. Choo, “A continuous discrete approach to the free vibration analysis of stiffened pierced walls on flexible foundations,” Int. J. of Solids and Structures, 33, 249–263 (1996).

    Article  Google Scholar 

  3. 3.

    J. S. Kuang and C. K. Chau, “Dynamic behavior of stiffened coupled shear walls with flexible bases,” Computer and Structures, 73, 327–339 (1999).

    Article  Google Scholar 

  4. 4.

    A. K. H. Kwan, “Analysis of building used strain-based element with rotational DOF,” J. of Structural Engineering, 118, 1191–1121 (1992).

    Article  Google Scholar 

  5. 5.

    A. K. H. Kwan, “Mixed finite element method for analysis of coupled shear/core,” J. of Structural Engineering, 119, 1388–1401 (1993).

    Article  Google Scholar 

  6. 6.

    Y. K.Cheung, F. T. K. Au, and D. Y. Zheng, “Analysis of deep beams and shear walls by finite strip method with C0 continuous displacement functions,” Thin Walled Structures, 32, 289–303 (1998).

    Article  Google Scholar 

  7. 7.

    S. Benyoucef, A. Tounsi, S. A. Meftah, and E. A. Adda Bedia, “Approximate analysis of the interfacial stress concentrations in FRP-RC hybrid beams,” Composite Interface J., 13, 561–571 (2006).

    Article  CAS  Google Scholar 

  8. 8.

    A. Tounsi, “Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plates,” Int. J. of Solids and Structures, 43, 4154–4174 (2006).

    Article  Google Scholar 

  9. 9.

    A. A. Baker, M. J. Callinan, R. Jones, and J. G. Williams, “Repair of Mirage III aircraft using BFRP crack patching technology,” Theoretical Applied Fracture Mechanics, 2, 1–16 (1984).

    Article  CAS  Google Scholar 

  10. 10.

    A. Megueni, A. Tounsi, B. Bachir Bouidjra, and B. Sereir, “The effect of a bonded hygrothermal aged composite patch on the stress intensity factor for cracked metallic structures,” J. of Compos. and Structures, 62, 171–176 (2003).

    Article  Google Scholar 

  11. 11.

    R. Yeghnem, S. A. Meftah, A. Tounsi, and E. A. Adda Bedia, “Earthquake response of RC coupled shear walls strengthened with thin composite plates,” J. of Vibration and Control, 15, 963–985 (2009).

    Article  Google Scholar 

  12. 12.

    S. A. Meftah, R. Yeghnem, A. Tounsi, and E. A. Adda Bedia, “Seismic behavior of RC coupled shear walls repaired with CFRP laminates having variable fibres spacing,” J. of Construction and Building Materials, 21, 1661–1671 (2007).

    Article  Google Scholar 

  13. 13.

    S. A. Meftah, R. Yeghnem, A. Tounsi, and E. A. Adda Bedia, “Lateral stiffness and vibration characteristics of composites plated RC shear walls with variable fibres spacing,” J. of Material and Design, 29, 1955–1964 (2008).

    Article  Google Scholar 

  14. 14.

    S. Benyoucef, A. Tounsi, E.A. Adda Bedia, and S. A. Meftah, “Creep and shrinkage effect on adhesive stresses in RC beams strengthened with composite laminates,” Composites Science and Technology, 67, 933–942 (2007).

    Article  Google Scholar 

  15. 15.

    S. Benyoucef, A. Tounsi, K. H. Benrahou, and E. A. Adda Bedia, “Time-dependent behavior of RC beams strengthened with externally bonded FRP plates: Interfacial stresses analysis,” Mechanics of Time-Dependent Materials, 11, 231–248 (2007).

    Article  Google Scholar 

  16. 16.

    Y. K. Cheung and S. Swaddiwudhipong, “Analysis of shear wall structures using finite strip elements,” Proc. Institution of Civil Engineers, Pt 2, 65, 517–535 (1978).

    Article  Google Scholar 

  17. 17.

    H. C. Chan and Y. K. Cheung, “Analysis of shear walls using higher order element,” J. of Building and Environment, 14, 217–221 (1979).

    Article  Google Scholar 

  18. 18.

    Y. K. Cheung, Tall building 2. Handbook of Structural Concrete. F. K Kong and al. (eds.) London, England, Pitman Books Limited (1983).

    Google Scholar 

  19. 19.

    D. G. Lee, “An efficient element for analysis of frames with shear walls,” ICES88, Atlanta, GA (1987).

  20. 20.

    H. S. Kim and D. G. Lee, “Analysis of shear wall with openings using super elements,” J. of Engineering Structures, 25, 981–991 (2003).

    Article  Google Scholar 

  21. 21.

    EUROCODE 2, Design of Concrete Structures. Pt 1–1: General Rules and Rules for Buildings. Editorial Group, Brussels (1991).

  22. 22.

    H. Trost and J. Wolff, “Zur wirklichkeitsnahen ermittlung der beanspruch-ungen in abschnittsweise hergestellten spannbetontragwerken,” Der Bauingenieur, 45, 155–169 (1970).

    Google Scholar 

  23. 23.

    R. M. Johnes, Mechanics of Composite Materials (eds.), Mc Graw-Hill, New York (1975).

    Google Scholar 

  24. 24.

    A. W. Leissa and A. F. Martin, “Vibration and buckling of rectangular composite plates with variable fiber spacing,” J. of Composite Structures, 14, 339–357 (1990).

    Article  Google Scholar 

  25. 25.

    K. J. Bathe, Finite Element Procedures (eds.), Prentice Hall Inc, New Jersey (1996).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Yeghnem.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 49, No. 2, pp. 263276 , MarchApril, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yeghnem, R., Meftah, S.A., Benyoucef, S. et al. A Finite-Element Model for the Lateral Stiffness and Vibration Characteristics of RС Shear Walls Strengthened with Composite Sheets: Creep and the Shrinkage Effect. Mech Compos Mater 49, 181–192 (2013). https://doi.org/10.1007/s11029-013-9334-6

Download citation

Keywords

  • RC shear walls
  • composite sheets
  • creep
  • shrinkage
  • finite-element method
  • time-dependent behavior