Skip to main content
Log in

Polytetramethylene glycol-modified polycyanurate matrices reinforced with nanoclays: synthesis and thermomechanical performance

  • Published:
Mechanics of Composite Materials Aims and scope

The outstanding improvement in the physical properties of cyanate esters (CEs) compared with those of competitor resins, such as epoxies, has attracted appreciable attention recently. Cyanate esters undergo thermal polycyclotrimerization to give polycyanurates (PCNs). However, like most thermo setting resins, the main draw back of CEs is brittleness. To over come this disadvan tage, CEs can be toughened by the introduction of polytetramethylene glycol (PTMG), a hydroxyl-terminated polyether. How ever, PTMG has a detrimental impact on Young’s modulus. To simultaneously enhance both the ductility and the stiffness of CE, we added PTMG and an organoclay (mont morillonite, MMT) to it. A series of PCN/PTMG/MMT nanocomposites with a constant PTMG weight ratio was pre pared, and the resulting nanophase morphology, i.e., the degree of filler dispersion and distribution in the composite and the thermomechanical properties, in terms of glass-transition behaviour, Young’s modulus, tensile strength, and elongation at break, were examined using the scanning elec tron micros copy (SEM), a dynamic mechanical analysis (DMA), and stress–strain measurements, re spectively. It was found that, at a content of MMT below 2 wt.%, MMT nanoparticles were distributed uniformly in the matrix, suggesting a lower degree of agglomeration for these materials. In the glassy state, the significant increase in the storage modulus revealed a great stiffening effect of MMT due to its high Young’s modulus. The modification with PTMG led to a 233% greater elongation at break compared with that of neat PCN. The nanocomposites exhibited an invariably higher Young’s modulus than PCN/PTMG for all the volume factors of organoclay examined, with the 2 wt.% material displaying the most pronounced in crease in the modulus, in agreement with micros copy results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Sinha Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Progr. Polym. Sci., 28, 1539–1641 (2003).

    Article  Google Scholar 

  2. D. P. R. Kint, G. Seeley, M. Gio-Batta, and A. N. Burgess, “Structure and properties of epoxy-based layered silicate nanocomposites,” J. Macromol. Sci., Pt. B, Phys., 44, 1021–1040 (2005).

    Article  CAS  Google Scholar 

  3. C. D. Rudd and R. W. Shaw, “Nanostructures in polymer matrices,” in: A Report on Work shop Organized by the University of Nottingham and Sponsored by U.S. Army European Research Office, London (2001), pp. 1–38.

  4. C. P. Reghunadhan Nair, D. Mathew, and K. Ninan, “Cyanateester resins, recent developments,” Adv. Polym. Sci., 155, 1–99 (2001).

    Article  Google Scholar 

  5. K. Liang, G. Li, H. Toghiani, J. H. Koo, and C. U. Pittman Jr, “Cyanate ester/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: synthesis and characterization,” Chem. Mater., 18, 301–312 (2006).

    Article  CAS  Google Scholar 

  6. S. Ganguli, D. Dean, K. Jordan, G. Price, and R. Vaia, “Mechanical properties of intercalated cyanate ester-layered silicate nanocomposites,” Polymer, 44, 1315–1319 (2003).

    Article  CAS  Google Scholar 

  7. I. Hamerton, “Introduction to cyanate ester resins,” in: I. Hamerton (ed.), Chemistry and Technology of Cyanate Ester Resins, Blackie, Glasgow (1994), pp. 1-6.

    Google Scholar 

  8. A. Fainleib, J. Grenet, M. R. Garda, J. M. Saiter, O. Grigoryeva, O. V. Grytsenko, N. Popescu, and M. C. Enescu, “Poly(bisphenol A)cyanurate network modified with poly(butyleneglycol adipate). Thermal and mechanical properties,” Polym. Degrad. Stab., 81, 423–430 (2003).

    Article  CAS  Google Scholar 

  9. J. N. Suman, J. Kathi, and S. Tammishetti, “Thermoplastic modifica tion of monomeric and partially polymerized Bisphenol A dicyanate ester,” Eur. Polym. J., 41, 2963–2972 (2005).

    Article  CAS  Google Scholar 

  10. A. M. Fainleib, O. P. Grigoryeva, and P. Pissis, “Modification of polycyanurates by polyethers, polyesters and polyurethanes. Hybrid and interpenetrat ing polymer networks,” in: E. B. Burlakova, A. E. Shilov, S. D. Varfolomeev, and G. E. Zaikov (eds.), Chemical and Biological Kinetics. New Horizons. Vol. 1. Chemical Kinetics, VSP In t. Publ., Leiden–Boston (2005), pp. 405–437.

    Google Scholar 

  11. A. M. Fainleib, O. P. Grigoryeva, and P. Pissis, “Recent advances in reactive modifica tion of polycyanurate net works,” in: G. E. Zaikov (ed.), Handbook of Polymer Research. Vol. 20, Ch. 7, Nova Sci. Publ., New York (2006).

    Google Scholar 

  12. A. M. Fainleib, O. P. Grigoryeva, and D. Hourston, “Synthe sis of inhomogeneous modified polycyanurates by reactive blending of bisphenol A dicyanate ester and polyoxypropyleneglycol,” Macromol. Symp., 164, 429–442 (2001).

    Article  CAS  Google Scholar 

  13. A. M. Fainleib, D. J. Hourston, O. P. Grigorieva, T. A. Shantalii, and L. M. Sergeeva, “Structure development in aromatic polycyanurate net works modified with hydroxyl-terminated polyethers,” Polymer, 42, 8361–8372 (2001).

    Article  CAS  Google Scholar 

  14. A. M. Fainleib, O. P. Grigorieva, and D. J. Hourston, “Structure–properties relationships for bisphenol A polycyanurate network modified with polyoxytetramethylene glycol,” Int. J. Polym. Mater., 51, 57–75 (2002).

    Article  CAS  Google Scholar 

  15. S. Kripotou , P. Pissis, E. Kontou, A. M. Fainleib, O. Grygoryeva, and I. Bey, “Structure–property relation ships in brittle polymer networks modified by flexible cross-links,” Mater. Sci., 24, No. 2/2, 477–492 (2006).

    CAS  Google Scholar 

  16. S. Kripotou, P. Pissis, E. Kontou, A. M. Fainleib, O. Grigoryeva, and I. Bey, “Polycyanurate networks modified by polyoxytetramethylene glycol,” Polym. Bull., 58, 93–104 (2007).

    Article  CAS  Google Scholar 

  17. S. Ray, and A. J. Easteal, “Advances in polymer–filler composites: macro to nano,” Mater. Manufact. Proc., 22, 741–749 (2007).

    Article  CAS  Google Scholar 

  18. M. Biswas and S. Sinha Ray, “Recent progress in synthesis and evaluation of polymer–montmoril lonite nanocomposites,” Adv. Polym. Sci., 155, 167–221 (2001).

    Article  CAS  Google Scholar 

  19. M. Alexandre and P. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Mater. Sci. Eng., 28, 1-63 (2000).

    Article  Google Scholar 

  20. E. P. Giannelis, R. Krishnamoorti, and E. Manias, “Polymer–silicate nanocomposites: model systems for confined polymers and polymer brushes,” Adv. Polym. Sci., 138, 107–147 (1999).

    Article  CAS  Google Scholar 

  21. Q. H. Zeng, A. B. Yu, G. Q. (Max) Lu, and D. R. Paul, “Clay-based polymer nanocomposites: research and commercial development,” J. Nanosci. Nanotechnol., 5, 1574–1592 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. S. C. Tjong, “Structural and mechanical properties of polymer nanocomposites,” Mater. Sci. Eng., R 53, 73–197 (2006).

    Article  Google Scholar 

  23. Y. Feng, Z. Fang, W. Mao, and A. Gu, “Study on the structure and properties of cyanate ester/bentonite nanocomposites,” J. Appl. Polym. Sci., 96, 632–637 (2005).

    Article  CAS  Google Scholar 

  24. T. J. Wooster, S. Abrol, and D. R. MacFarlane, “Rheological and mechancal properties of percolated cyanate ester nanocomposites,” Polymer, 46, 8011–8017 (2005).

    Article  CAS  Google Scholar 

  25. G. I. Anthoulis, E. Kontou, A. Fainleib, I. Bei, and Y. Gomza, “Synthe sis and characterization of polycyanurate montmorillo nite nanocomposites,” J. Polym. Sci., Pt. B, Polym. Phys. (in press).

  26. Z. Fang, H. Shi, A. Gu, and Y. Feng, “Effect of bentonite on the structure and mechanical properties of CE/CTBN system,” J. Mater. Sci., 42, 4603–4608 (2007).

    Article  ADS  CAS  Google Scholar 

  27. K. Matsunaga, M. Tajima, and Y. Yoshida, “Thermal degradation of carboxylate-based polyurethane anionomers,” J. Appl. Polym. Sci., 101, 573–579 (2006).

    Article  CAS  Google Scholar 

  28. E. Kontou and P. Farasoglou, “Determination of the true stress–strain behaviour of polypropylene,” J. Mater. Sci., 33, 147–153 (1998).

    Article  CAS  Google Scholar 

  29. E. Kontou and M. Niaounakis, “Thermo-mechanical properties of LLDPE/SiO2 nanocomposites,” Polymer, 47, 1267–1280 (2006).

    Article  CAS  Google Scholar 

  30. E. Kontou and G. Anthoulis, “The effect of silica nanoparticles on the thermomechanical properties of polystyrene,” J. Appl. Polym. Sci., 105, 1723–1731 (2007).

    Article  CAS  Google Scholar 

  31. D. Ratna, N. R. Manoj, R. Varley, R. K. Singh Raman, and G. P. Simon, “Clay-reinforced epoxy nanocomposites,” Polym. Int., 52, 1403–1407 (2003).

    Article  CAS  Google Scholar 

  32. A. Bartolotta, G. Di Marco, G. Carini, G. D’Angelo, G. Tripodo, A. Fainleib, and V. P. Privalko, “Relaxation in semi-interpenetrating polymers network of linear polyurethane and heterocyclic polymer networks,” J. Non-Cryst. Solids, 235–237, 600–604 (1998).

    Article  Google Scholar 

  33. O. Becker, R. Varley, and G. Simon, “Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins,” Polymer, 43, 4365–4373 (2002).

    Article  CAS  Google Scholar 

  34. I. Mondragón, L. Solar, A. Nohales, C. I. Vallo, and C. M. Gómez, “Properties and structure of cyanate ester/polysulfone/organoclay nanocomposites,” Polymer, 47, 3401–3409 (2006).

    Article  Google Scholar 

  35. M. Bauer and J. Bauer, “As pects on the ki net ics, mod el ling and sim u la tion of net work build-up during cyanate ester cure,” in: I. Hamerton (ed.), Chemistry and Technology of Cyanate Ester Resins, Blackie, Glasgow (1994), pp. 58–85.

    Google Scholar 

  36. T. J. Wooster, S. Abrol, and D. R. MacFarlane, “Cyanate ester polymerization catalysis by layered silicates,” Polymer, 45, 7845–7852 (2004).

    Article  CAS  Google Scholar 

  37. X. Kornmann, R. Thomann, R. Mülhaupt, J. Finter, and L. A. Berglund, “High performance epoxy-layered silicate nanocomposites,” Polym. Eng. Sci., 42, 1815–1826 (2002).

    Article  CAS  Google Scholar 

  38. C. Basara, U. Yilmazer, and G. Bayram, “Synthesis and characterization of epoxy based nanocomposites,” J. Appl. Polym. Sci., 98, 1081–1086 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 45, No. 2, pp. 255–268, March–April, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anthoulis, G.I., Kontou, E., Fainleib, A. et al. Polytetramethylene glycol-modified polycyanurate matrices reinforced with nanoclays: synthesis and thermomechanical performance. Mech Compos Mater 45, 175–182 (2009). https://doi.org/10.1007/s11029-009-9073-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-009-9073-x

Keywords

Navigation