Mechanics of Composite Materials

, Volume 45, Issue 2, pp 175–182 | Cite as

Polytetramethylene glycol-modified polycyanurate matrices reinforced with nanoclays: synthesis and thermomechanical performance

  • G. I. Anthoulis
  • E. Kontou
  • A. Fainleib
  • I. Bei

The outstanding improvement in the physical properties of cyanate esters (CEs) compared with those of competitor resins, such as epoxies, has attracted appreciable attention recently. Cyanate esters undergo thermal polycyclotrimerization to give polycyanurates (PCNs). However, like most thermo setting resins, the main draw back of CEs is brittleness. To over come this disadvan tage, CEs can be toughened by the introduction of polytetramethylene glycol (PTMG), a hydroxyl-terminated polyether. How ever, PTMG has a detrimental impact on Young’s modulus. To simultaneously enhance both the ductility and the stiffness of CE, we added PTMG and an organoclay (mont morillonite, MMT) to it. A series of PCN/PTMG/MMT nanocomposites with a constant PTMG weight ratio was pre pared, and the resulting nanophase morphology, i.e., the degree of filler dispersion and distribution in the composite and the thermomechanical properties, in terms of glass-transition behaviour, Young’s modulus, tensile strength, and elongation at break, were examined using the scanning elec tron micros copy (SEM), a dynamic mechanical analysis (DMA), and stress–strain measurements, re spectively. It was found that, at a content of MMT below 2 wt.%, MMT nanoparticles were distributed uniformly in the matrix, suggesting a lower degree of agglomeration for these materials. In the glassy state, the significant increase in the storage modulus revealed a great stiffening effect of MMT due to its high Young’s modulus. The modification with PTMG led to a 233% greater elongation at break compared with that of neat PCN. The nanocomposites exhibited an invariably higher Young’s modulus than PCN/PTMG for all the volume factors of organoclay examined, with the 2 wt.% material displaying the most pronounced in crease in the modulus, in agreement with micros copy results.


polycyanurate organoclay thermomechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Sinha Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Progr. Polym. Sci., 28, 1539–1641 (2003).CrossRefGoogle Scholar
  2. 2.
    D. P. R. Kint, G. Seeley, M. Gio-Batta, and A. N. Burgess, “Structure and properties of epoxy-based layered silicate nanocomposites,” J. Macromol. Sci., Pt. B, Phys., 44, 1021–1040 (2005).CrossRefGoogle Scholar
  3. 3.
    C. D. Rudd and R. W. Shaw, “Nanostructures in polymer matrices,” in: A Report on Work shop Organized by the University of Nottingham and Sponsored by U.S. Army European Research Office, London (2001), pp. 1–38.Google Scholar
  4. 4.
    C. P. Reghunadhan Nair, D. Mathew, and K. Ninan, “Cyanateester resins, recent developments,” Adv. Polym. Sci., 155, 1–99 (2001).CrossRefGoogle Scholar
  5. 5.
    K. Liang, G. Li, H. Toghiani, J. H. Koo, and C. U. Pittman Jr, “Cyanate ester/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: synthesis and characterization,” Chem. Mater., 18, 301–312 (2006).CrossRefGoogle Scholar
  6. 6.
    S. Ganguli, D. Dean, K. Jordan, G. Price, and R. Vaia, “Mechanical properties of intercalated cyanate ester-layered silicate nanocomposites,” Polymer, 44, 1315–1319 (2003).CrossRefGoogle Scholar
  7. 7.
    I. Hamerton, “Introduction to cyanate ester resins,” in: I. Hamerton (ed.), Chemistry and Technology of Cyanate Ester Resins, Blackie, Glasgow (1994), pp. 1-6.Google Scholar
  8. 8.
    A. Fainleib, J. Grenet, M. R. Garda, J. M. Saiter, O. Grigoryeva, O. V. Grytsenko, N. Popescu, and M. C. Enescu, “Poly(bisphenol A)cyanurate network modified with poly(butyleneglycol adipate). Thermal and mechanical properties,” Polym. Degrad. Stab., 81, 423–430 (2003).CrossRefGoogle Scholar
  9. 9.
    J. N. Suman, J. Kathi, and S. Tammishetti, “Thermoplastic modifica tion of monomeric and partially polymerized Bisphenol A dicyanate ester,” Eur. Polym. J., 41, 2963–2972 (2005).CrossRefGoogle Scholar
  10. 10.
    A. M. Fainleib, O. P. Grigoryeva, and P. Pissis, “Modification of polycyanurates by polyethers, polyesters and polyurethanes. Hybrid and interpenetrat ing polymer networks,” in: E. B. Burlakova, A. E. Shilov, S. D. Varfolomeev, and G. E. Zaikov (eds.), Chemical and Biological Kinetics. New Horizons. Vol. 1. Chemical Kinetics, VSP In t. Publ., Leiden–Boston (2005), pp. 405–437.Google Scholar
  11. 11.
    A. M. Fainleib, O. P. Grigoryeva, and P. Pissis, “Recent advances in reactive modifica tion of polycyanurate net works,” in: G. E. Zaikov (ed.), Handbook of Polymer Research. Vol. 20, Ch. 7, Nova Sci. Publ., New York (2006).Google Scholar
  12. 12.
    A. M. Fainleib, O. P. Grigoryeva, and D. Hourston, “Synthe sis of inhomogeneous modified polycyanurates by reactive blending of bisphenol A dicyanate ester and polyoxypropyleneglycol,” Macromol. Symp., 164, 429–442 (2001).CrossRefGoogle Scholar
  13. 13.
    A. M. Fainleib, D. J. Hourston, O. P. Grigorieva, T. A. Shantalii, and L. M. Sergeeva, “Structure development in aromatic polycyanurate net works modified with hydroxyl-terminated polyethers,” Polymer, 42, 8361–8372 (2001).CrossRefGoogle Scholar
  14. 14.
    A. M. Fainleib, O. P. Grigorieva, and D. J. Hourston, “Structure–properties relationships for bisphenol A polycyanurate network modified with polyoxytetramethylene glycol,” Int. J. Polym. Mater., 51, 57–75 (2002).CrossRefGoogle Scholar
  15. 15.
    S. Kripotou , P. Pissis, E. Kontou, A. M. Fainleib, O. Grygoryeva, and I. Bey, “Structure–property relation ships in brittle polymer networks modified by flexible cross-links,” Mater. Sci., 24, No. 2/2, 477–492 (2006).Google Scholar
  16. 16.
    S. Kripotou, P. Pissis, E. Kontou, A. M. Fainleib, O. Grigoryeva, and I. Bey, “Polycyanurate networks modified by polyoxytetramethylene glycol,” Polym. Bull., 58, 93–104 (2007).CrossRefGoogle Scholar
  17. 17.
    S. Ray, and A. J. Easteal, “Advances in polymer–filler composites: macro to nano,” Mater. Manufact. Proc., 22, 741–749 (2007).CrossRefGoogle Scholar
  18. 18.
    M. Biswas and S. Sinha Ray, “Recent progress in synthesis and evaluation of polymer–montmoril lonite nanocomposites,” Adv. Polym. Sci., 155, 167–221 (2001).CrossRefGoogle Scholar
  19. 19.
    M. Alexandre and P. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Mater. Sci. Eng., 28, 1-63 (2000).CrossRefGoogle Scholar
  20. 20.
    E. P. Giannelis, R. Krishnamoorti, and E. Manias, “Polymer–silicate nanocomposites: model systems for confined polymers and polymer brushes,” Adv. Polym. Sci., 138, 107–147 (1999).CrossRefGoogle Scholar
  21. 21.
    Q. H. Zeng, A. B. Yu, G. Q. (Max) Lu, and D. R. Paul, “Clay-based polymer nanocomposites: research and commercial development,” J. Nanosci. Nanotechnol., 5, 1574–1592 (2005).PubMedCrossRefGoogle Scholar
  22. 22.
    S. C. Tjong, “Structural and mechanical properties of polymer nanocomposites,” Mater. Sci. Eng., R 53, 73–197 (2006).CrossRefGoogle Scholar
  23. 23.
    Y. Feng, Z. Fang, W. Mao, and A. Gu, “Study on the structure and properties of cyanate ester/bentonite nanocomposites,” J. Appl. Polym. Sci., 96, 632–637 (2005).CrossRefGoogle Scholar
  24. 24.
    T. J. Wooster, S. Abrol, and D. R. MacFarlane, “Rheological and mechancal properties of percolated cyanate ester nanocomposites,” Polymer, 46, 8011–8017 (2005).CrossRefGoogle Scholar
  25. 25.
    G. I. Anthoulis, E. Kontou, A. Fainleib, I. Bei, and Y. Gomza, “Synthe sis and characterization of polycyanurate montmorillo nite nanocomposites,” J. Polym. Sci., Pt. B, Polym. Phys. (in press).Google Scholar
  26. 26.
    Z. Fang, H. Shi, A. Gu, and Y. Feng, “Effect of bentonite on the structure and mechanical properties of CE/CTBN system,” J. Mater. Sci., 42, 4603–4608 (2007).CrossRefADSGoogle Scholar
  27. 27.
    K. Matsunaga, M. Tajima, and Y. Yoshida, “Thermal degradation of carboxylate-based polyurethane anionomers,” J. Appl. Polym. Sci., 101, 573–579 (2006).CrossRefGoogle Scholar
  28. 28.
    E. Kontou and P. Farasoglou, “Determination of the true stress–strain behaviour of polypropylene,” J. Mater. Sci., 33, 147–153 (1998).CrossRefGoogle Scholar
  29. 29.
    E. Kontou and M. Niaounakis, “Thermo-mechanical properties of LLDPE/SiO2 nanocomposites,” Polymer, 47, 1267–1280 (2006).CrossRefGoogle Scholar
  30. 30.
    E. Kontou and G. Anthoulis, “The effect of silica nanoparticles on the thermomechanical properties of polystyrene,” J. Appl. Polym. Sci., 105, 1723–1731 (2007).CrossRefGoogle Scholar
  31. 31.
    D. Ratna, N. R. Manoj, R. Varley, R. K. Singh Raman, and G. P. Simon, “Clay-reinforced epoxy nanocomposites,” Polym. Int., 52, 1403–1407 (2003).CrossRefGoogle Scholar
  32. 32.
    A. Bartolotta, G. Di Marco, G. Carini, G. D’Angelo, G. Tripodo, A. Fainleib, and V. P. Privalko, “Relaxation in semi-interpenetrating polymers network of linear polyurethane and heterocyclic polymer networks,” J. Non-Cryst. Solids, 235–237, 600–604 (1998).CrossRefGoogle Scholar
  33. 33.
    O. Becker, R. Varley, and G. Simon, “Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins,” Polymer, 43, 4365–4373 (2002).CrossRefGoogle Scholar
  34. 34.
    I. Mondragón, L. Solar, A. Nohales, C. I. Vallo, and C. M. Gómez, “Properties and structure of cyanate ester/polysulfone/organoclay nanocomposites,” Polymer, 47, 3401–3409 (2006).CrossRefGoogle Scholar
  35. 35.
    M. Bauer and J. Bauer, “As pects on the ki net ics, mod el ling and sim u la tion of net work build-up during cyanate ester cure,” in: I. Hamerton (ed.), Chemistry and Technology of Cyanate Ester Resins, Blackie, Glasgow (1994), pp. 58–85.Google Scholar
  36. 36.
    T. J. Wooster, S. Abrol, and D. R. MacFarlane, “Cyanate ester polymerization catalysis by layered silicates,” Polymer, 45, 7845–7852 (2004).CrossRefGoogle Scholar
  37. 37.
    X. Kornmann, R. Thomann, R. Mülhaupt, J. Finter, and L. A. Berglund, “High performance epoxy-layered silicate nanocomposites,” Polym. Eng. Sci., 42, 1815–1826 (2002).CrossRefGoogle Scholar
  38. 38.
    C. Basara, U. Yilmazer, and G. Bayram, “Synthesis and characterization of epoxy based nanocomposites,” J. Appl. Polym. Sci., 98, 1081–1086 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • G. I. Anthoulis
    • 1
  • E. Kontou
    • 1
  • A. Fainleib
    • 2
  • I. Bei
    • 2
  1. 1.Department of MechanicsNational Technical UniversityAthensGreece
  2. 2.Institute of Macromolecular Chemistry of National Academy of SciencesKievUkraine

Personalised recommendations