Skip to main content

Biophysical and socioeconomic factors influencing soil carbon stocks: a global assessment

Abstract

Soil is the most important terrestrial carbon (C) reservoir but is greatly impacted by land use change (LUC). Previous analyses of LUC impacts on soil C have focused on biophysical variables, leaving aside the influence of socioeconomics. The aim of our study was to determine global soil organic carbon (SOC) change patterns after LUC and to assess the impacts of both biophysical and socioeconomic factors that influence stocks of SOC after LUC simultaneously. This was done at a global scale using 817 sites from 99 peer-reviewed publications. We performed separate analyses for cases in which there were gains and losses of SOC. The best predictors of SOC stock changes were the type of LUC and predictors related to sampling depth, climate, biome, soil order, relief, geology, years since LUC, and primary productivity. However, also, socioeconomic variables such as indices of poverty, population growth, and levels of corruption were important. They explained 33% of the variability in SOC on their own and helped improve model accuracy from 42 to 53% when considered in combination with biophysical variables. SOC losses were highly correlated to the type of LUC and social variables, while SOC gains correlated most strongly with years since LUC and the biophysical variables. The analyses confirm that one of the biggest drivers of SOC loss is conversion to agroindustrial scale cropping, whereas with regard to the recuperation of SOC after LUC, the factor “time since conversion” emerged as the most important predictive variable, which must be better integrated in respective policy expectations. We conclude that policies should more than ever incentivize holistic approaches that prevent additional loss of native SOC, while at the same time promoting sustainable intensification of existing agricultural regions. Finally future investments on LUC to regain SOC should be aligned with efforts to alleviate poverty and corruption for their potential to achieve mutual gains in soil fertility and socio-economic parameters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet 29:535–562

    Article  Google Scholar 

  2. Baldi G, Verón SR, Jobbágy EG (2013) The imprint of humans on landscape patterns and vegetation functioning in the dry subtropics. Glob Chang Biol 19:441–458. https://doi.org/10.1111/gcb.12060

    Article  Google Scholar 

  3. Barbier EB, Hochard JP (2016) Does land degradation increase poverty in developing countries? PLoS One 11:e0152973. https://doi.org/10.1371/journal.pone.0152973

    Article  Google Scholar 

  4. Barbier EB, Burgess JC, Grainger A (2010) The forest transition: towards a more comprehensive theoretical framework. Land Use Policy 27:98–107. https://doi.org/10.1016/j.landusepol.2009.02.001

    Article  Google Scholar 

  5. Barrett CB, Bevis LEM (2015) The self-reinforcing feedback between low soil fertility and chronic poverty. Nat Geosci 8:907–912. https://doi.org/10.1038/ngeo2591

    Article  Google Scholar 

  6. Barrett CB, Marenya PP, Mcpeak J, Minten B, Murithi F, Oluoch-Kosura W, Place F, Randrianarisoa JC, Rasambainarivo J, Wangila J (2006) Welfare dynamics in rural Kenya and Madagascar. J Dev Stud 42:248–277. https://doi.org/10.1080/00220380500405394

    Article  Google Scholar 

  7. Bastin JF, Finegold Y, Garcia C et al (2019) The global tree restoration potential. Science (80-) 364:76–79. https://doi.org/10.1126/science.aax0848

    Article  Google Scholar 

  8. Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163

    Article  Google Scholar 

  9. Berkes F, Folke C (1998) Linking social and ecological systems for resilience and sustainability. In: Linking social and ecological systems

  10. Bestelmeyer BT, Okin GS, Duniway MC, Archer SR, Sayre NF, Williamson JC, Herrick JE (2015) Desertification, land use, and the transformation of global drylands. Front Ecol Environ 13:28–36. https://doi.org/10.1890/140162

    Article  Google Scholar 

  11. Chabbi A, Lehmann J, Ciais P, Loescher HW, Cotrufo MF, Don A, SanClements M, Schipper L, Six J, Smith P, Rumpel C (2017) Aligning agriculture and climate policy. Nat Clim Chang 7:307–309. https://doi.org/10.1038/nclimate3286

    Article  Google Scholar 

  12. Chaudhry IS, ur Rahman S (2009) The impact of gender inequality in education on rural poverty in Pakistan: an empirical analysis. Eur J Econ Finance Adm Sci 15:174–188

    Google Scholar 

  13. Chen S, Wang W, Xu W, Wang Y, Wan H, Chen D, Tang Z, Tang X, Zhou G, Xie Z, Zhou D, Shangguan Z, Huang J, He JS, Wang Y, Sheng J, Tang L, Li X, Dong M, Wu Y, Wang Q, Wang Z, Wu J, Chapin FS III, Bai Y (2018) Plant diversity enhances productivity and soil carbon storage. Proc Natl Acad Sci U S A 115:4027–4032. https://doi.org/10.1073/pnas.1700298114

    Article  Google Scholar 

  14. CIESIN C for IESIN (1999) Poverty Mapping Project: global subnational infant mortality rates. NASA Socioecon Data Appl Cent (SEDAC), Palisades. https://doi.org/10.7927/H4PZ56R2

    Book  Google Scholar 

  15. Collantes V, Kloos K, Henry P, Mboya A, Mor T, Metternicht G (2018) Moving towards a twin-agenda: gender equality and land degradation neutrality. Environ Sci Pol 89:247–253. https://doi.org/10.1016/j.envsci.2018.08.006

    Article  Google Scholar 

  16. Conant RT, Paustian K, Elliott E (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 11:343–355. https://doi.org/10.1890/1051-0761(2001)011[0343:GMACIG]2.0.CO;2

    Article  Google Scholar 

  17. Cowie AL, Orr BJ, Castillo Sanchez VM, Chasek P, Crossman ND, Erlewein A, Louwagie G, Maron M, Metternicht GI, Minelli S, Tengberg AE, Walter S, Welton S (2018) Land in balance: the scientific conceptual framework for land degradation neutrality. Environ Sci Pol 79:25–35. https://doi.org/10.1016/j.envsci.2017.10.011

    Article  Google Scholar 

  18. de Koning GHJ, Veldkamp E, López-Ulloa M (2003) Quantification of carbon sequestration in soils following pasture to forest conversion in northwestern Ecuador. Glob Biogeochem Cycles. https://doi.org/10.1029/2003gb002099

  19. DeFries RS, Rudel T, Uriarte M, Hansen M (2010) Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat Geosci 3:178–181. https://doi.org/10.1038/ngeo756

    Article  Google Scholar 

  20. Deng L, Zhu G, Tang Z, Shangguan Z (2016) Global patterns of the effects of land-use changes on soil carbon stocks. Glob Ecol Conserv 5:127–138

    Article  Google Scholar 

  21. Dokuchaev V (1879) Mapping the Russian soils. Imp Univ St Petersbg

  22. Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Glob Chang Biol 17:1658–1670. https://doi.org/10.1111/j.1365-2486.2010.02336.x

    Article  Google Scholar 

  23. Duarte-Guardia S, Peri PL, Amelung W, Sheil D, Laffan SW, Borchard N, Bird MI, Dieleman W, Pepper DA, Zutta B, Jobbagy E, Silva LCR, Bonser SP, Berhongaray G, Piñeiro G, Martinez MJ, Cowie AL, Ladd B (2019) Better estimates of soil carbon from geographical data: a revised global approach. Mitig Adapt Strateg Glob Chang 24:355–372. https://doi.org/10.1007/s11027-018-9815-y

    Article  Google Scholar 

  24. Eclesia RP, Jobbagy EG, Jackson RB, Biganzoli F, Piñeiro G (2012) Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. Glob Chang Biol 18:3237–3251. https://doi.org/10.1111/j.1365-2486.2012.02761.x

    Article  Google Scholar 

  25. Ellert BH, Bettany JR (1995) Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J Soil Sci 75:529–538. https://doi.org/10.4141/cjss95-075

    Article  Google Scholar 

  26. FAO (2015) Status of the World’s Soil Resources

  27. FAO (2019) Measuring and modelling soil carbon stocks and stock changes in livestock production systems

  28. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  29. Fisher MJ, Rao I, Ayarza MA et al (1994) Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371:236–238

    Article  Google Scholar 

  30. Friedlingsten P, Jones MW, O’Sullivan M et al (2019) Global carbon budget 2019. Earth Syst Sci Data 11:1783–1838

    Article  Google Scholar 

  31. Fujisaki K, Chevallier T, Chapuis-Lardy L, Albrecht A, Razafimbelo T, Masse D, Ndour YB, Chotte JL (2018) Soil carbon stock changes in tropical croplands are mainly driven by carbon inputs: a synthesis. Agric Ecosyst Environ 259:147–158. https://doi.org/10.1016/j.agee.2017.12.008

    Article  Google Scholar 

  32. Gardi C, Visioli G, Conti FD, Scotti M, Menta C, Bodini A (2016) High nature value farmland: assessment of soil organic carbon in Europe. Front Environ Sci 4:1–10. https://doi.org/10.3389/fenvs.2016.00047

    Article  Google Scholar 

  33. Giardina CP, Hancock J, Lilleskov E, Loya W (2006) The response of belowground carbon allocation in forests to global change

  34. Gross CD, Harrison RB (2019) The case for digging deeper: soil organic carbon storage, dynamics, and controls in our changing world. Soil Syst 3:28. https://doi.org/10.3390/soilsystems3020028

    Article  Google Scholar 

  35. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360. https://doi.org/10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  36. Harper C, Marcus R, Moore K (2003) Enduring poverty and the conditions of childhood: lifecourse and intergenerational poverty transmissions. World Dev 31:535–554. https://doi.org/10.1016/S0305-750X(03)00010-X

    Article  Google Scholar 

  37. Hartmann J, Moosdorf N (2012) The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem Geophys Geosyst 13. doi: https://doi.org/10.1029/2012GC004370

  38. Hengl T, De Jesus JM, Heuvelink GBM, et al (2017) SoilGrids250m: global gridded soil information based on machine learning

  39. Henry B, Murphy B, Cowie A (2018) Sustainable land management for environmental benefits and food security - a synthesis report for the GEF. 127. https://doi.org/10.13140/RG.2.2.25084.39041

  40. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  41. Hothorn T, Hornik K, Strobl C, Zeileis A (2008) Party: a Laboratory for recursive part(y)itioning: R package. v 1.3-1. R Packag version 09-0, URL http//CRAN R-project org

  42. Houghton RA, Nassikas AA (2017) Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob Biogeochem Cycles 31:456–472. https://doi.org/10.1002/2016GB005546

    Article  Google Scholar 

  43. Hounkpatin KOL, Welp G, Akponikpè PBI, Rosendahl I, Amelung W (2018) Carbon losses from prolonged arable cropping of Plinthosols in Southwest Burkina Faso. Soil Tillage Res 175:51–61. https://doi.org/10.1016/j.still.2017.08.014

    Article  Google Scholar 

  44. IPBES (2018) Summary for policymakers of the thematic assessment report on land degradation and restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Preliminary guide regarding diverse conceptualization of multiple values of nature and its benefits, including biodiversity and ecosystem functions and services (deliverable 3). doi: https://doi.org/10.1016/0025-326x(95)90325-6

  45. IPCC (1996) Revised 1996 IPCC guidelines for national greenhouse gas inventories. Oceania

  46. Iwahashi J, Pike RJ (2007) Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 86:409–440. https://doi.org/10.1016/j.geomorph.2006.09.012

    Article  Google Scholar 

  47. Jandl R, Rodeghiero M, Martinez C, Cotrufo MF, Bampa F, van Wesemael B, Harrison RB, Guerrini IA, Richter DB Jr, Rustad L, Lorenz K, Chabbi A, Miglietta F (2014) Current status, uncertainty and future needs in soil organic carbon monitoring. Sci Total Environ 468-469:376–383. https://doi.org/10.1016/j.scitotenv.2013.08.026

    Article  Google Scholar 

  48. Jenny H (1941) Factors of soil formation. A system of quantitative pedology, Soil Science. Dover Publications, New York

    Google Scholar 

  49. Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its. Ecol Appl 10:423–436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2

    Article  Google Scholar 

  50. Jones RJA, Hiederer R, Rusco E, Montanarella L (2005) Estimating organic carbon in the soils of Europe for policy support. Eur J Soil Sci 56:655–671. https://doi.org/10.1111/j.1365-2389.2005.00728.x

    Article  Google Scholar 

  51. Kaufmann D, Kraay A, Mastruzzi M (2010) The worldwide governance indicators: a summary of methodology Data and Analytical Issues. World Bank Policy Res Work Pap 5430:220–246. https://doi.org/10.1017/S1876404511200046

    Article  Google Scholar 

  52. Kirschbaum MUF (2000) Will changes in soil organic carbon act as a positive or. Biogeochemistry 48:21–51

    Article  Google Scholar 

  53. Kögel-Knabner I, Amelung W (2014) Dynamics, chemistry, and preservation of organic matter in soils

  54. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science (80-) 304:1623–1627

    Article  Google Scholar 

  55. Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical regions. Annu Rev Environ Resour 28:205–241. https://doi.org/10.1146/annurev.energy.28.050302.105459

    Article  Google Scholar 

  56. Linstädter A, Kuhn A, Naumann C, Rasch S, Sandhage-Hofmann A, Amelung W, Jordaan J, du Preez CC, Bollig M (2016) Assessing the resilience of a real-world social-ecological system: lessons from a multidisciplinary evaluation of a south African pastoral system. Ecol Soc 21. doi: https://doi.org/10.5751/ES-08737-210335

  57. Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323. https://doi.org/10.2307/2389824

    Article  Google Scholar 

  58. Lobe I, Amelung W, Du Preez CC (2001) Losses of carbon and nitrogen with prolonged arable cropping from sandy soils of the south African Highveld. Eur J Soil Sci 52:93–101. https://doi.org/10.1046/j.1365-2389.2001.t01-1-00362.x

    Article  Google Scholar 

  59. Lobe I, Bol R, Ludwig B, du Preez CC, Amelung W (2005) Savanna-derived organic matter remaining in arable soils of the south African Highveld long-term mixed cropping: evidence from 13C and 15N natural abundance. Soil Biol Biochem 37:1898–1909. https://doi.org/10.1016/j.soilbio.2005.02.030

    Article  Google Scholar 

  60. Luo Z, Feng W, Luo Y, Baldock J, Wang E (2017) Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob Chang Biol 23:4430–4439

    Article  Google Scholar 

  61. Lugo AE, Brown S (1993) Management of tropical soils as sinks or sources of atmospheric carbon. Plant Soil 149:27–41 https://doi.org/10.1007/BF00010760

  62. Lützow MV, Kögel-Knabner I, Ekschmitt K et al (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review. Eur J Soil Sci 57:426–445. https://doi.org/10.1111/j.1365-2389.2006.00809.x

    Article  Google Scholar 

  63. Meybeck M, Green P, Vörösmarty C (2001) A new typology for mountains and other relief classes. Mt Res Dev 21:34–45. https://doi.org/10.1659/0276-4741(2001)021[0307:c]2.0.co;2

    Article  Google Scholar 

  64. Minasny B, Malone BP, McBratney A et al (2017) Soil carbon 4 per mille. Geoderma 292:59–86

    Article  Google Scholar 

  65. Mobley ML, Lajtha K, Kramer MG, Bacon AR, Heine PR, Richter DD (2015) Surficial gains and subsoil losses of soil carbon and nitrogen during secondary forest development. Glob Chang Biol 21:986–996. https://doi.org/10.1111/gcb.12715

    Article  Google Scholar 

  66. Nelson A (2008) Travel time to major cities: a global map of accessibility. JRC, Eur Comm. https://doi.org/10.2788/95835

  67. Nordhaus WD (2006) Geography and macroeconomics: new data and new findings. Proc Natl Acad Sci U S A 103:3510–3517. https://doi.org/10.1073/pnas.0509842103

    Article  Google Scholar 

  68. Nordhaus WD, Chen X (2016) Global gridded geographically based economic data (G-Econ), version 4. Palisades, NY NASA Socioecon. Data Appl. Cent

  69. Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science (80-) 325:419–422. https://doi.org/10.1126/science.1172133

    Article  Google Scholar 

  70. Panagos P, Borrelli P, Poesen J (2019) Soil loss due to crop harvesting in the European Union: a first estimation of an underrated geomorphic process. Sci Total Environ 664:487–498. https://doi.org/10.1016/j.scitotenv.2019.02.009

    Article  Google Scholar 

  71. Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257

    Article  Google Scholar 

  72. Post W, Kwon K (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327. https://doi.org/10.1046/j.1365-2486.2000.00308.x

    Article  Google Scholar 

  73. Powers JS, Schlesinger WH (2002) Relationships among soil carbon distributions and biophysical factors at nested spatial scales in rain forests of northeastern Costa Rica. Geoderma. 109:165–190. https://doi.org/10.1016/S0016-7061(02)00147-7

    Article  Google Scholar 

  74. Powers JS, Corre MD, Twine TE, Veldkamp E (2011) Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc Natl Acad Sci 108:6318–6322. https://doi.org/10.1073/pnas.1016774108

    Article  Google Scholar 

  75. Preger AC, Kösters R, Du Preez CC et al (2010) Carbon sequestration in secondary pasture soils: a chronosequence study in the South African Highveld. Eur J Soil Sci 61:551–562. https://doi.org/10.1111/j.1365-2389.2010.01248.x

    Article  Google Scholar 

  76. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) Special paper: a global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134. https://doi.org/10.2307/2845499

    Article  Google Scholar 

  77. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  78. Rabbi SMF, Tighe M, Cowie A, Wilson BR, Schwenke G, Mcleod M, Badgery W, Baldock J (2014) The relationships between land uses, soil management practices, and soil carbon fractions in South Eastern Australia. Agric Ecosyst Environ 197:41–52. https://doi.org/10.1016/j.agee.2014.06.020

    Article  Google Scholar 

  79. Reynolds JF, Stafford Smith DM, Lambin EF et al (2007) Ecology: global desertification: building a science for dryland development. Science (80-):316, 847–851. https://doi.org/10.1126/science.1131634

  80. Robinson TP, William Wint GR, Conchedda G et al (2014) Mapping the global distribution of livestock. PLoS One 9:e96084. https://doi.org/10.1371/journal.pone.0096084

    Article  Google Scholar 

  81. Rstudio Team (2016) RStudio: integrated development for R. RStudio, Inc., Boston MA. RStudio

  82. Rumpel C, Amiraslani F, Koutika L-S, Smith P, Whitehead D, Wollenberg E (2018) Put more carbon in soils to meet Paris climate pledges. Nature 564:32–34. https://doi.org/10.1038/d41586-018-07587-4

    Article  Google Scholar 

  83. Sanderman J, Hengl T, Fiske GJ (2017) Soil carbon debt of 12,000 years of human land use. Proc Natl Acad Sci 114:9575–9580. https://doi.org/10.1073/pnas.1706103114

    Article  Google Scholar 

  84. Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5:81–91. https://doi.org/10.4155/cmt.13.77

    Article  Google Scholar 

  85. Shively GE (2004) Poverty and forest degradation: introduction to the special issue. Environ Dev Econ 9:131–134. https://doi.org/10.1017/s1355770x03001153

    Article  Google Scholar 

  86. Six J, Feller C, Denef K et al (2002) Soil organic matter, biota and aggregation in temperate and tropical soils - effects of no-tillage. Agronomie 22:575–579. https://doi.org/10.1051/agro

    Article  Google Scholar 

  87. Smith P (2008) Land use change and soil organic carbon dynamics. Nutr Cycl Agroecosyst 81:169–178. https://doi.org/10.1007/s10705-007-9138-y

    Article  Google Scholar 

  88. Stockmann U, Padarian J, McBratney A, Minasny B, de Brogniez D, Montanarella L, Hong SY, Rawlins BG, Field DJ (2015) Global soil organic carbon assessment. Glob Food Sec 6:9–16. https://doi.org/10.1016/j.gfs.2015.07.001

    Article  Google Scholar 

  89. Strobl C, Malley J, Tutz G (2009) Characteristics of classification and regression trees, bagging and random forests. Psychol Methods 14:323–348. https://doi.org/10.1037/a0016973.An

    Article  Google Scholar 

  90. Trabucco A, Zomer RJ (2009) Global potential evapo-transpiration (Global-PET) and global aridity index (Global-Aridity) geo-database. CGIAR Consort Spat Inf

  91. Trabucco A, Zomer RJ (2010) Global soil water balance geospatial database. CGIAR Consort Spat Inf

  92. Tsiafouli MA, Thébault E, Sgardelis SP, de Ruiter PC, van der Putten WH, Birkhofer K, Hemerik L, de Vries FT, Bardgett RD, Brady MV, Bjornlund L, Jørgensen HB, Christensen S, Hertefeldt TD’, Hotes S, Gera Hol WH, Frouz J, Liiri M, Mortimer SR, Setälä H, Tzanopoulos J, Uteseny K, Pižl V, Stary J, Wolters V, Hedlund K (2015) Intensive agriculture reduces soil biodiversity across Europe. Glob Chang Biol 21:973–985. https://doi.org/10.1111/gcb.12752

    Article  Google Scholar 

  93. Upson MA, Burgess PJ, Morison JIL (2016) Soil carbon changes after establishing woodland and agroforestry trees in a grazed pasture. Geoderma 283:10–20. https://doi.org/10.1016/j.geoderma.2016.07.002

    Article  Google Scholar 

  94. Verburg PH, Metternicht G, Allen C et al (2019) Creating an enabling environment for land degradation neutrality and its potential contribution to enhancing well-being, livelihoods and the environment. A report of the science-policy Interface. United Nations Convention to Combat Desertification (UNCCD), Bonn

    Google Scholar 

  95. Walker B, Holling CS, Carpenter SR, Kinzig A (2004) Resilience, adaptability and transformability in social– ecological systems. Ecol Soc 9:5. https://doi.org/10.1103/PhysRevLett.95.258101

    Article  Google Scholar 

  96. WCED (1987) Brutland report: our common future

  97. WCS WCS, CIESIN C for IESIN (2005) Last of the wild project, version 2, 2005 (LWP-2): global human influence index (HII) dataset (geographic). Columbia Univ. doi: https://doi.org/10.7927/H4BP00QC

  98. West PC, Gibbs HK, Monfreda C, Wagner J, Barford CC, Carpenter SR, Foley JA (2010) Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc Natl Acad Sci U S A 107:19645–19648. https://doi.org/10.1073/pnas.1011078107

    Article  Google Scholar 

  99. Wiesmeier M, Schad P, von Lützow M, Poeplau C, Spörlein P, Geuß U, Hangen E, Reischl A, Schilling B, Kögel-Knabner I (2014) Quantification of functional soil organic carbon pools for major soil units and land uses in southeast Germany (Bavaria). Agric Ecosyst Environ 185:208–220. https://doi.org/10.1016/j.agee.2013.12.028

    Article  Google Scholar 

  100. Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, van Wesemael B, Rabot E, Ließ M, Garcia-Franco N, Wollschläger U, Vogel HJ, Kögel-Knabner I (2019) Soil organic carbon storage as a key function of soils - a review of drivers and indicators at various scales. Geoderma 333:149–162. https://doi.org/10.1016/j.geoderma.2018.07.026

    Article  Google Scholar 

Download references

Acknowledgments

We thank INTA Argentina for supporting our work in Patagonia and Universidad Nacional de la Patagonia Austral (UNPA, Argentina) for supporting and promoting education through phD scholarship programs. Evert Thomas is supported by the CGIAR Fund donors.

Author information

Affiliations

Authors

Contributions

S.D., P.P., W.A., and B.L. contributed in the conception of this study. S.D., E.T, W.A., P.P., and B.L. run and interpreted the analyses. S.D., P.P., W.A., E.T., N.B., G.B., A.C., and B.L. drafted, wrote, and made substantial revisions to the paper.

Corresponding author

Correspondence to Brenton Ladd.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Appendices for our work can be found in this link: https://www.unpa.edu.ar/cecyt/1876/grupo/forestal_silvopastoril/actividades.

ESM 1

(XLS 678 kb)

ESM 2

(PDF 784 kb)

ESM 3

(XLSX 3027 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duarte-Guardia, S., Peri, P., Amelung, W. et al. Biophysical and socioeconomic factors influencing soil carbon stocks: a global assessment. Mitig Adapt Strateg Glob Change 25, 1129–1148 (2020). https://doi.org/10.1007/s11027-020-09926-1

Download citation

Keywords

  • Land use change
  • Socioeconomic context
  • Biophysical
  • Global
  • Soil organic carbon change