Improving African bean productivity in a changing global environment

Abstract

Common bean (Phaseolus vulgaris) cultivation delivers income to farmers and nutrition to consumers in sub-Saharan Africa. With a growing population and land scarcity, there will be greater pressure to intensify common bean and other crops in the region. However, high temperatures and increased drought may reduce common bean yields in Africa. Climate change impacts on climbing beans are not yet clear. Therefore, the objective of this study was to evaluate the expected impact of climate change on suitability for climbing bean cultivation. The study identifies areas suitable to cultivate climbing beans in sub-Saharan Africa, taking into account the present climate as well as the predicted future climate. The analysis compares and evaluates the performance of two ecological niche models—Ecocrop and MaxEnt—under future climatic conditions, according to global circulation models of the last Intergovernmental Panel on Climate Change (IPCC) report. The Ecocrop model results showed a wide common bean distribution in comparison with those of MaxEnt, which showed a better approximation to the current distribution of climbing beans. The MaxEnt model performed well as judged by validation statistics and comparison with climbing bean production data. Overall, the models project climate change to decrease the suitability of climbing beans in Africa. The results suggest that rising temperatures and variable rainfall will most severely affect bean production in countries of southern Africa such as Zambia, Zimbabwe, Malawi, and Mozambique. In other parts of the tropics, climbing bean cultivation may suffer rising temperatures and more variable rainfall at higher latitudes, as opposed to areas near the equator. The study suggests where agricultural specialists can promote climbing beans in Africa and other regions of the world, where they are highly suitable and not yet widely cultivated. Researchers can improve studies such as this one for beans and other crops by developing more detailed calibration and validation data sets for modeling efforts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Beebe S, Ramirez J, Jarvis A, Rao IM, Mosquera G, Bueno JM, Blair MW (2011) Genetic improvement of common beans and the challenges of climate change. Crop Adapt Clim Chang 26:356–369

    Google Scholar 

  2. Bunce JA (2008) Contrasting responses of seed yield to elevated carbon dioxide under field conditions within Phaseolus vulgaris. Agric Ecosyst Environ 128:219–224

    Article  Google Scholar 

  3. Buruchara R, Chirwa R, Sperling L, Mukankusi C, Rubyogo JC, Mutonhi R, Abang MM (2011) Development and delivery of bean varieties in Africa: the Pan-Africa bean research Alliance (PABRA) model. Afr Crop Sci J 19(4):227–245

    Google Scholar 

  4. Cogato A, Meggio F, De Antoni MM, Marinello F (2019) Extreme weather events in agriculture: a systematic review. Sustainability 11(9):2547

    Article  Google Scholar 

  5. Da Silva J, Ferreira P, Pires L, Pereira E, Carneiro J (2013) Influences of two CO2 concentrations and water availability on bean crop. Eng Agríc Jaboticabal 33(4):730–738

    Article  Google Scholar 

  6. Drewnowski A (2010) The nutrient rich foods index helps to identify healthy, affordable foods. Am J Clin Nutr 91(4):1095S–1101S

    Article  Google Scholar 

  7. Food and Agriculture Organization of the United Nations. FAO (2008) The Global Administrative Unit Layers (GAUL): Technical Aspects. Food and 733 Agriculture Organization of the United Nations, EC-FAO Food Security Programme (ESTG), Rome

    Google Scholar 

  8. Food and Agriculture Organization of the United Nations. FAO [accessed on March 1st, 2019a]: Crop production statistics data. [Internet]. Available from: http://www.fao.org/faostat/en/#data/QC

  9. Food and Agriculture Organization of the United Nations. FAO [Accessed on March 15, 2019b]: FAO Ecocrop Database [Internet]. Available from: http://ecocrop.fao.org/ecocrop/srv/en/dataSheet?id=1668

  10. Food and Agriculture Organization of the United Nations. FAO [accessed on March 15, 2019c]: Water for Agriculture and Energy: Malawi [Internet]. Lilongwe: Food and Agriculture Organization; 2015 p. 1–44. Available from: http://www.fao.org/fileadmin/user_upload/agwa/docs/NIP_Malawi_Final.pdf

  11. Franke AC, Baijukya F, Kantengwa S, Reckling M, Vanlauwe B, Giller KE (2016) Poor farmers–poor yields: socio-economic, soil fertility and crop management indicators affecting climbing bean productivity in northern Rwanda Exp Agr 1-21

  12. Global Climate Data. WorldClim. BIOCLIM. [Internet] [Accessed on March 15, 2019]. Available from http://www.worldclim.org/bioclim

  13. Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GB, Ribeiro E, Samuel-Rosa A, Kempen B, Leenaars JG, Walsh MG, Gonzalez MR (2014) SoilGrids1km—global soil information based on automated mapping. PLoS One 9(8):e105992

    Article  Google Scholar 

  14. Hernández Fonseca JC (2009) Manual de recomendaciones técnicas: cultivo de frijol (Phaseolus vulgaris). Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria, San José (Costa Rica) 77 p

    Google Scholar 

  15. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography. 29(5):773–785

    Article  Google Scholar 

  16. Hijmans RJ (2012) Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology. 93(3):679–688

    Article  Google Scholar 

  17. Hijmans RJ, Van Etten J (2016) raster: Geographic data analysis and modeling. R package version 2.5–8. Vienna, Austria: The R Foundation 2019 [Internet] [Accessed on May 20, 2019]. Available from: https://CRAN.R-project.org/package=raster

  18. Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS Plant Genet Resour Newslett 127:15–19

    Google Scholar 

  19. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978

    Article  Google Scholar 

  20. Intergovernmental Panel on Climate Change. IPCC [Accessed on March 15, 2019]: Summary for Policymakers, Technical Summary and Frequently Asked Questions. In Climate Change 2013: The Physical Science Basis. 2013.[Internet]. Available from: https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/

  21. International Soil Reference and Information Centre. ISRIC-WDC. World Soil Information [Internet] [Accessed on March 15, 2019]. Available from: http://soilgrids.org/

  22. Jarvis A, Reuter HI, Nelson A, Guevara E [Accessed on June 20, 2018]: Hole-filled SRTM for the globe Version 4. International Centre for Tropical Agriculture. [Internet]. Available from: http://srtm.csi.cgiar.org

  23. Katungi E, Farrow A, Chianu J, Sperling L, Beebe S (2009) Common bean in Eastern and Southern Africa: a situation and outlook analysis. Int Centre Tropical Agric 61:1–44

    Google Scholar 

  24. Katungi EM, Larochelle C, Mugabo JR, Buruchara R (2018) The effect of climbing bean adoption on the welfare of smallholder common bean growers in Rwanda. Food Secur 10(1):61–79

    Article  Google Scholar 

  25. Larochelle C, Alwang J, Norton GW, Katungi E, Labarta RA (2015) 16 impacts of improved bean varieties on poverty and food security in Uganda and Rwanda. In: Walker S, Alwan J (eds) Crop Improvement, Adoption and Impact of Improved Varieties in Food Crops in Sub-Saharan Africa. 314

  26. Larochelle C, Katungi E, Cheng Z (2017) Pulse consumption and demand by different population subgroups in Uganda and Tanzania, International Center for Tropical Agriculture (CIAT) [Accessed on 15 August 2019] Available from: https://cgspace.cgiar.org/handle/10568/82822

  27. Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40(4):778–789

    Article  Google Scholar 

  28. Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science. 319(5863):607–610

    Article  Google Scholar 

  29. Loboguerrero AM, Campbell BM, Cooper PJ, Hansen JW, Rosenstock T, Wollenberg E (2019) Food and earth systems: priorities for climate change adaptation and mitigation for agriculture and food systems. Sustainability. 11(5):1372

    Article  Google Scholar 

  30. López Alvarez DC (ed) (2014) Predicción de la futura distribución potencial de Quercus humboldtii bajo diferentes escenarios de cambio climático. Universidad San Francisco de Quito, Quito (Ecuador) 70 p

    Google Scholar 

  31. Mandeville PB (2008) Tema 18 ¿Por qué se deben centrar las covariables en regresión lineal? CIENCIA-UANL 11(3):13

    Google Scholar 

  32. McGrath JM, Lobell DB (2013) Regional disparities in the CO2 fertilization effect and implications for crop yields. Environ Res Lett 8(1):014054

    Article  Google Scholar 

  33. Musoni A, Buruchara R, Kimani PM (2001) Climbing beans in Rwanda: development, impact, and challenges. In: Kirkby R (ed) PABRA Millennium Workshop. 44 p

  34. Musoni A, Kimani P, Narla RD, Buruchara R (2010) Inheritance of fusarium wilts (Fusarium oxysporum F. sp. phaseoli) resistance in climbing beans. Afr J Agric Res 5(5):399–404

    Google Scholar 

  35. Musoni A, Kayumba J, Butare L, Mukamuhirwa F, Murwanashyaka E, Mukankubana D, Kelly JD, Ininda J, Gahakwa D (2014): Innovations to overcome staking challenges to growing climbing beans by smallholders in Rwanda. In Vanlauwe B, Asten P, Blomme G (eds) Challenges and opportunities for agricultural intensification of the humid highland systems of Sub-Saharan Africa. Springer 129–136

  36. Pan African Bean Research Alliance (PABRA). [Accessed on 9 June 2019]. The promise of beans. Pabra-africa.org. 2019. Available from: http://www.pabra-africa.org/the-promise-of-beans/

  37. Pearce J, Ferrier S (2000) An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol Model 128(2–3):127–147

    Article  Google Scholar 

  38. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 31(2):161–175

    Article  Google Scholar 

  39. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259

    Article  Google Scholar 

  40. Porch TG, Jahn M (2001) Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ 7:723–731

    Article  Google Scholar 

  41. Ramaekers L, Micheni A, Mbogo P, Vanderleyden J, Maertens M (2013) Adoption of climbing beans in the central highlands of Kenya: an empirical analysis of farmers adoption decisions. Afr J Agric Res 8(1):1–9

    Google Scholar 

  42. Ramírez Villegas J, Jarvis A (2010) Downscaling global circulation model outputs: the delta method decision and policy analysis working paper no. 1. CCAFS climate change, agriculture and food security. [internet] [Accessed on March 18, 2018]. Available from: http://www.ccafs-climate.org/downloads/docs/Downscaling-WP-01.pdf

  43. Ramirez-Villegas J, Jarvis A, Läderach P (2013) Empirical approaches for assessing impacts of climate change on agriculture: the EcoCrop model and a case study with grain sorghum. Agric For Meteorol 170:67–78

    Article  Google Scholar 

  44. Restrepo J (2017) Personal communication

  45. Ríos Ríos Betancourt MJ, Tobón Cardona JH (1992) Selección de parámetros y variables agroecológicas para la investigación en fríjol. In: Tobón JH, editor. Curso internacional sobre fríjol (Phaseolus vulgaris L.) en zona de ladera de la región andina. Rionegro, Antioquía. Instituto Agropecuario Colombiano, Centro Internacional de Agricultura Tropical, & Cooperación técnica Suiza. p. 5–26

  46. Smith MR, Myers SS (2018) Impact of anthropogenic CO 2 emissions on global human nutrition. Nat Clim Chang 8(9):834

    Article  Google Scholar 

  47. Soares J, Deuchande T, Valente LM, Pintado M, Vasconcelos MW (2019) Growth and nutritional responses of bean and soybean genotypes to elevated CO2 in a controlled environment. Plants 8(11):465

    Article  Google Scholar 

  48. Worttman CS, Kirkby RA, Eledu CA, Allen D (1998) Atlas of Common Bean (Phaseolus vulgaris L) Production in Africa Cali: Centro Internacional de Agricultura Tropical 297. 131 p

  49. Yalew A, Hirte G, Lotze-Campen H, Tscharaktschiew S (2018) Climate change, agriculture, and economic development in Ethiopia. Sustainability 10(10):3464

    Article  Google Scholar 

Download references

Acknowledgments

Ricardo Labarta (CIAT) provided the calibration data on climbing bean presence in Uganda and Rwanda from the DIIVA project, without which the modeling would have been impossible. José Restrepo of the Foundation for Agricultural Research and Development (FIDAR) shared his first-hand and extensive experience on different aspects of climbing beans. Rachel Muthoni provided information and guidance related to her work with the Pan-African Bean Research Alliance (PABRA). Andrew Farrow provided geographic and statistical information on common bean from the Atlas of Common Bean in Africa. Special thanks to Dr. I. Rao for advice on common bean agronomy and crop physiology.

Funding

The CGIAR funded this research (https://www.cgiar.org/funders/).

Author information

Affiliations

Authors

Contributions

Conceptualization, G.T., G.H., S.B., R.B., and J.R.; methodology, G.T., G. H, J.C.R, E.K., and F.C.; validation, G.T. and F.C.; formal analysis, G.T. and F.C.; investigation, G.T. and F.C.; writing—original draft preparation, G.T., G.H., E.K., J.C.R. and R.B.; writing—review and editing, G.H., S.B., E.K., J.C.R., R.B., and F.C.; supervision, G.H. and J.R.

Corresponding author

Correspondence to Glenn Hyman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taba-Morales, G., Hyman, G., Mejía, J.R. et al. Improving African bean productivity in a changing global environment. Mitig Adapt Strateg Glob Change 25, 1013–1029 (2020). https://doi.org/10.1007/s11027-019-09910-4

Download citation

Keywords

  • Climbing beans
  • Species distribution models
  • MaxEnt
  • Ecocrop
  • Climate change
  • Spatial analysis
  • Geographic distribution