Skip to main content

Advertisement

Log in

Bioenergy with carbon capture and storage: are short-term issues set aside?

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Negative emission technologies (NETs) are a set of technologies that could retrieve greenhouse gases from the atmosphere. NETs could dramatically contribute to maintaining the temperature increase to within the limit of 2 °C or even 1.5 °C. Bioenergy with carbon capture and storage (BECCS) is one of the most studied NETs. BECCS captures carbon dioxide (CO2) emissions coming from a bioenergy plant—e.g., electricity, biofuels, and hydrogen—and stores those emissions in a geologic reservoir, typically a saline aquifer. The purpose of this article is to investigate whether a research community exists on BECCS, and whether it is aligned with research priorities. To do so, a bibliometric analysis is conducted based on author collaborations on BECCS in academic journals between 2001 and 2017. The co-authorship network shows that BECCS research is largely based on the integrated assessment model (IAM) research community. These models analyze how power and transportation systems evolve under a climate constraint in the long run, e.g., until 2100. Such a focus has advantages and drawbacks. On the one hand, it helps to build a common vision of the technology and possible roadmaps. On the other hand, I highlight that the implementation features of BECCS in the near future are insufficiently assessed, e.g., techno-economic analyses, business models, local-scale assessments, and comparison with other NETs. These issues are marginal in the network, whereas long-term analyses are at its core. Future research programmes should better include them to avoid a considerable disappointment about the real potential of BECCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akgul O, Mac Dowell N, Papageorgiou LG, Shah N (2014) A mixed integer nonlinear programming (MINLP) supply chain optimization framework for carbon negative electricity generation using biomass to energy with CCS (BECCS) in the UK. Int J Greenhouse Gas Control 28:189–202

    Article  Google Scholar 

  • Al-Ansari T, Korre A, Shah N (2014) Integrated modelling of the energy, water and food nexus to enhance the environmental performance of food production systems. In: Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2014). American center for life cycle assessment, San Francisco, California, USA, pp 1–10

  • Anderegg WRL, Prall JW, Harold J, Schneider SH (2010) Expert credibility in climate change. Proc Natl Acad Sci 107:12107–12109

    Article  Google Scholar 

  • Azar C, Lindgren K, Andersson BA (2003) Global energy scenarios meeting stringent CO2 constraints—cost-effective fuel choices in the transportation sector. Energy Policy 31:961–976

    Article  Google Scholar 

  • Azar C, Lindgren K, Larson E, Möllersten K (2006) Carbon capture and storage from fossil fuels and biomass—costs and potential role in stabilizing the atmosphere. Clim Chang 74:47–79

    Article  Google Scholar 

  • Azar C, Lindgren K, Obersteiner M, Riahi K, van Vuuren DP, den Elzen KMGJ, Möllersten K, Larson ED (2010) The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS). Clim Chang 100:195–202

    Article  Google Scholar 

  • Bellamy R, Chilvers J, Vaughan NE, Lenton TM (2012) A review of climate geoengineering appraisals. Wiley Interdiscip Rev Clim Chang 3:597–615

    Article  Google Scholar 

  • Belter CW, Seidel DJ (2013) A bibliometric analysis of climate engineering research. Wiley Interdiscip. Rev Clim Change 4:417–427

    Google Scholar 

  • Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment. https://doi.org/10.1088/1742-5468/2008/10/P10008

    Article  Google Scholar 

  • Boucher O, Forster PM, Gruber N, Ha-Duong M, Lawrence MG, Lenton TM, Maas A, Vaughan NE (2014) Rethinking climate engineering categorization in the context of climate change mitigation and adaptation. Wiley Interdiscip Rev Clim Chang 5:23–35

    Article  Google Scholar 

  • Faaij A (2006) Modern biomass conversion technologies. Mitig Adapt Strateg Glob Chang 11:343–375

    Article  Google Scholar 

  • Fuss S, Canadell JG, Peters GP, Tavoni M, Andrew RM, Ciais P, Jackson RB, Jones CD, Kraxner F, Nakicenovic N, Le Quéré C, Raupach MR, Sharifi A, Smith P, Yamagata Y (2014) Betting on negative emissions. Nat Clim Chang 4:850–853

    Article  Google Scholar 

  • Fuss S, Jones CD, Kraxner F, Peters GP, Smith P, Tavoni M, van Vuuren DP, Canadell JG, Jackson RB, Milne J, Moreira JR, Nakicenovic N, Sharifi A, Yamagata Y (2016) Research priorities for negative emissions. Environ Res Lett 11:115007

    Article  Google Scholar 

  • Gibon T, Hertwich EG, Arvesen A, Singh B, Verones F (2017) Health benefits, ecological threats of low-carbon electricity. Environ Res Lett 12:034023

    Article  Google Scholar 

  • Goyal S, van der Leij MJ, Moraga-González JL (2006) Economics: an emerging small world. J Polit Econ 114:403–412

    Article  Google Scholar 

  • Greene CH, Huntley ME, Archibald I, Gerber LN, Sills DL, Granados J, Beal CM, Walsh MJ (2017) Geoengineering, marine microalgae, and climate stabilization in the 21st century. Earths Future 5:278–284

    Article  Google Scholar 

  • Hailey AK, Meerman JC, Larson ED, Loo Y-L (2016) Low-carbon “drop-in replacement” transportation fuels from non-food biomass and natural gas. Appl Energy 183:1722–1730

    Article  Google Scholar 

  • Haunschild R, Bornmann L, Marx W (2016) Climate change research in view of bibliometrics. PLoS One 11:e0160393

    Article  Google Scholar 

  • Herzog H (2016) Lessons learned from CCS demonstration and large pilot projects, MIT energy initiative working paper MITEI-WP-2016-06

  • IEA (2013) Technology roadmap—carbon capture and storage. OECD/IEA, Paris

    Google Scholar 

  • IEA (2016) Twenty years of carbon capture storage. OECD/IEA, Paris

    Google Scholar 

  • IPCC (2014) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York

    Google Scholar 

  • Jackson RB, Canadell JG, Fuss S, Milne J, Nakicenovic N, Tavoni M (2017) Focus on negative emissions. Environ Res Lett 12:110201

    Article  Google Scholar 

  • Jankó F, Móricz N, Papp Vancsó J (2014) Reviewing the climate change reviewers: exploring controversy through report references and citations. Geoforum 56:17–34

    Article  Google Scholar 

  • Khorshidi Z, Ho M, Wiley D (2015) Techno-economic evaluation of using biomass-fired auxiliary units for supplying energy requirements of CO2 capture in coal-fired power plants. Int J Greenhouse Gas Control 32:24–36

    Article  Google Scholar 

  • Kraxner F, Aoki K, Leduc S, Kindermann G, Fuss S, Yang J, Yamagata Y, Tak K-I, Obersteiner M (2014a) BECCS in South Korea—analyzing the negative emissions potential of bioenergy as a mitigation tool. Renew Energy 61:102–108

    Article  Google Scholar 

  • Kraxner F, Leduc S, Fuss S, Aoki K, Kindermann G, Yamagata Y (2014b) Energy resilient solutions for Japan—a BECCS case study. Energy Procedia 61:2791–2796

    Article  Google Scholar 

  • Kriegler E, Mouratiadou I, Luderer G, Edmonds J, Edenhofer O (2016) Introduction to the RoSE special issue on the impact of economic growth and fossil fuel availability on climate protection. Clim Chang 136:1–6

    Article  Google Scholar 

  • Kriegler E, Weyant JP, Blanford GJ, Krey V, Clarke L, Edmonds J, Fawcett A, Luderer G, Riahi K, Richels R, Rose SK, Tavoni M, van Vuuren DP (2014) The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim Chang 123:353–367

    Article  Google Scholar 

  • Kumar S (2015) Co-authorship networks: a review of the literature. Aslib J Inf Manag 67:55–73

    Article  Google Scholar 

  • Li J, Wang M-H, Ho Y-S (2011) Trends in research on global climate change: a science citation index expanded-based analysis. Glob Planet Chang 77:13–20

    Article  Google Scholar 

  • Linnér B-O, Wibeck V (2015) Dual high-stake emerging technologies: a review of the climate engineering research literature. Wiley Interdiscip Rev Clim Chang 6:255–268

    Article  Google Scholar 

  • Liu G, Williams RH, Larson ED, Kreutz TG (2011) Design/economics of low-carbon power generation from natural gas and biomass with synthetic fuels co-production. Energy Procedia 4:1989–1996

    Article  Google Scholar 

  • Lomax G, Lenton TM, Adeosun A, Workman M (2015) Investing in negative emissions. Nat Clim Chang 5:498–500

    Article  Google Scholar 

  • Lotze-Campen H, von Lampe M, Kyle P, Fujimori S, Havlik P, van Meijl H, Hasegawa T, Popp A, Schmitz C, Tabeau A, Valin H, Willenbockel D, Wise M (2014) Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agric Econ 45:103–116

    Article  Google Scholar 

  • Luckow P, Wise MA, Dooley JJ, Kim SH (2010) Large-scale utilization of biomass energy and carbon dioxide capture and storage in the transport and electricity sectors under stringent CO2 concentration limit scenarios. Int J Greenhouse Gas Control 4:865–877

    Article  Google Scholar 

  • Mathews JA (2008) Carbon-negative biofuels. Energy Policy 36:940–945

    Article  Google Scholar 

  • Melin G, Persson O (1996) Studying research collaboration using co-authorships. Scientometrics 36:363–377

    Article  Google Scholar 

  • Milgram S (1967) The small-world problem. Psychol Today 1:61–67

    Google Scholar 

  • Minx JC, Lamb WF, Callaghan MW, Bornmann L, Fuss S (2017) Fast growing research on negative emissions. Environ Res Lett 12:035007

    Article  Google Scholar 

  • Möllersten K, Yan J (2001) Economic evaluation of biomass-based energy systems with CO2 capture and sequestration in Kraft pulp mills—the influence of the price of CO2 emission quota world. Resour Rev 13:509–525

    Google Scholar 

  • Möllersten K, Yan JR, Moreira J (2003) Potential market niches for biomass energy with CO2 capture and storage—opportunities for energy supply with negative CO2 emissions. Biomass Bioenergy 25:273–285

    Article  Google Scholar 

  • Newman MEJ (2004) Co-authorship networks and patterns of scientific collaboration. Proc Natl Acad Sci 101:5200–5205

    Article  Google Scholar 

  • Obersteiner M, Azar C, Kossmeier S, Mechler R, Moellersten K, Nilsson S, Read P, Yamagata Y, Yan J (2001) Managing climate risk. Science 294:786–787

    Article  Google Scholar 

  • Oldham P, Szerszynski B, Stilgoe J, Brown C, Eacott B, Yuille A (2014) Mapping the landscape of climate engineering. Philos Trans R Soc A Math Phys Eng Sci 372:20140065–20140065

    Article  Google Scholar 

  • Oreggioni GD, Singh B, Cherubini F, Guest G, Lausselet C, Luberti M, Ahn H, Strømman AH (2017) Environmental assessment of biomass gasification combined heat and power plants with absorptive and adsorptive carbon capture units in Norway. Int J Greenhouse Gas Control 57:162–172

    Article  Google Scholar 

  • Pang M, Zhang L, Liang S, Liu G, Wang C, Hao Y, Wang Y, Xu M (2017) Trade-off between carbon reduction benefits and ecological costs of biomass-based power plants with carbon capture and storage (CCS) in China. J Clean Prod 144:279–286

    Article  Google Scholar 

  • Pasgaard M, Strange N (2013) A quantitative analysis of the causes of the global climate change research distribution. Glob Environ Chang 23:1684–1693

    Article  Google Scholar 

  • Popp A, Dietrich JP, Lotze-Campen H, Klein D, Bauer N, Krause M, Beringer T, Gerten D, Edenhofer O (2011) The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ Res Lett 6:034017

    Article  Google Scholar 

  • Porter RTJ, Fairweather M, Pourkashanian M, Woolley RM (2015) The range and level of impurities in CO2 streams from different carbon capture sources. Int J Greenhouse Gas Control 36:161–174

    Article  Google Scholar 

  • Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma JC, KC S, Leimbach M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, da Silva LA, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman JC, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Chang 42:153–168

    Article  Google Scholar 

  • Rochedo P, Costa I, Império C, Hoffmann B, Merschmann P, Oliveira C, Szklo S, Schaeffer R (2016) Carbon capture potential and cost in Brazil. J Clean Prod 131:280–295

    Article  Google Scholar 

  • Sharifzadeh M, Wang L, Shah N (2015) Integrated biorefineries: CO2 utilization for maximum biomass conversion. Renew Sust Energ Rev 47:151–161

    Article  Google Scholar 

  • Sithole H, Cockerill TT, Hughes KJ, Ingham DB, Ma L, Porter RTJ, Pourkashanian M (2016) Developing an optimal electricity generation mix for the UK 2050 future. Energy 100:363–373

    Article  Google Scholar 

  • Stanhill G (2001) The growth of climate change science: a scientometric study. Clim Chang 48:515–524

    Article  Google Scholar 

  • Tavoni M, Tol RSJ (2010) Counting only the hits? The risk of underestimating the costs of stringent climate policy. Clim Chang 100:769–778

    Article  Google Scholar 

  • Tsiropoulos I, Hoefnagels R, van den Broek M, Patel MK, Faaij APC (2017) The role of bioenergy and biochemicals in CO2 mitigation through the energy system—a scenario analysis for the Netherlands. GCB Bioenergy 9:1489–1509

    Article  Google Scholar 

  • Uddin SN, Barreto L (2007) Biomass-fired cogeneration systems with CO2 capture and storage. Renew Energy 32:1006–1019

    Article  Google Scholar 

  • van der Zwaan B, Kober T, Calderon S et al (2014) Energy technology roll-out for climate change mitigation: a multi-model study for Latin America. Energy Econ 56:526–542

    Article  Google Scholar 

  • van Vuuren DP, Deetman S, van Vliet J, van den Berg M, van Ruijven BJ, Koelbl B (2013) The role of negative CO2 emissions for reaching 2 °C—insights from integrated assessment modelling. Clim Chang 118:15–27

    Article  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011a) Representative concentration pathways: an overview. Clim Chang 109:5–31

    Article  Google Scholar 

  • van Vuuren DP, Stehfest E, den Elzen MGJ, Kram T, van Vliet J, Deetman S, Isaac M, Klein Goldewijk K, Hof A, Mendoza Beltran A, Oostenrijk R, van Ruijven B (2011b) RCP2.6: exploring the possibility to keep global mean temperature increase below 2 °C. Clim Chang 109:95–116

    Article  Google Scholar 

  • Vaughan NE, Gough C (2016) Expert assessment concludes negative emissions scenarios may not deliver. Environ Res Lett 11:095003

    Article  Google Scholar 

  • Wallquist L, Seigo SLO, Visschers VHM, Siegrist M (2012) Public acceptance of CCS system elements: a conjoint measurement. Int J Greenhouse Gas Control 6:77–83

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  Google Scholar 

  • Yue D, You F, Snyder SW (2014) Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng 66:36–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audrey Laude.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laude, A. Bioenergy with carbon capture and storage: are short-term issues set aside?. Mitig Adapt Strateg Glob Change 25, 185–203 (2020). https://doi.org/10.1007/s11027-019-09856-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-019-09856-7

Keywords

Navigation