Advertisement

Better estimates of soil carbon from geographical data: a revised global approach

  • Sandra Duarte-Guardia
  • Pablo L. Peri
  • Wulf Amelung
  • Douglas Sheil
  • Shawn W. Laffan
  • Nils Borchard
  • Michael I. Bird
  • Wouter Dieleman
  • David A. Pepper
  • Brian Zutta
  • Esteban Jobbagy
  • Lucas C. R. Silva
  • Stephen P. Bonser
  • Gonzalo Berhongaray
  • Gervasio Piñeiro
  • Maria-Jose Martinez
  • Annette L. Cowie
  • Brenton Ladd
Original Article

Abstract

Soils hold the largest pool of organic carbon (C) on Earth; yet, soil organic carbon (SOC) reservoirs are not well represented in climate change mitigation strategies because our database for ecosystems where human impacts are minimal is still fragmentary. Here, we provide a tool for generating a global baseline of SOC stocks. We used partial least square (PLS) regression and available geographic datasets that describe SOC, climate, organisms, relief, parent material and time. The accuracy of the model was determined by the root mean square deviation (RMSD) of predicted SOC against 100 independent measurements. The best predictors were related to primary productivity, climate, topography, biome classification, and soil type. The largest C stocks for the top 1 m were found in boreal forests (254 ± 14.3 t ha−1) and tundra (310 ± 15.3 t ha−1). Deserts had the lowest C stocks (53.2 ± 6.3 t ha−1) and statistically similar C stocks were found for temperate and Mediterranean forests (142 - 221 t ha−1), tropical and subtropical forests (94 - 143 t ha−1) and grasslands (99-104 t ha−1). Solar radiation, evapotranspiration, and annual mean temperature were negatively correlated with SOC, whereas soil water content was positively correlated with SOC. Our model explained 49% of SOC variability, with RMSD (0.68) representing approximately 14% of observed C stock variance, overestimating extremely low and underestimating extremely high stocks, respectively. Our baseline PLS predictions of SOC stocks can be used for estimating the maximum amount of C that may be sequestered in soils across biomes.

Keywords

Soil organic carbon Geographic information systems Climate Global Pristine ecosystems Baseline 

Notes

Acknowledgements

We thank INTA Argentina for supporting our work in Patagonia. Nils Borchard was placed as an integrated expert at the Centre for International Migration and Development (CIM). CIM is a joint venture of the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH and the International Placement Services (ZAV) of the German Federal Employment Agency (BA).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11027_2018_9815_MOESM1_ESM.pdf (146 kb)
ESM 1 (PDF 145 kb)
11027_2018_9815_MOESM2_ESM.xlsx (34.4 mb)
ESM 2 (XLSX 34.4 mb)
11027_2018_9815_MOESM3_ESM.xls (2.7 mb)
ESM 3 (XLS 2.68 mb)

References

  1. Adams M, Crawford J, Field D, Henakaarchchi N, Jenkins M, McBratney A, de Courcelles VDR, Singh K, Stockmann U, Wheeler I (2011) Managing the soil-plant system to mitigate atmospheric CO2. Discussion paper for the Soil Carbon Sequestration Summit, 31 January–2 February 2011. The United States Studies Centre at the University of SydneyGoogle Scholar
  2. Adhikari K, Hartemink AE, Minasny B, Kheir RB, Greve MB, Greve MH (2014) Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS One 9(8):e105519CrossRefGoogle Scholar
  3. Asner GP, Powell GVN, Mascaro J, Knapp DE, Clark JK, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E, Secada L, Valqui M, Hughes RF (2010) High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci 107:16738–16742CrossRefGoogle Scholar
  4. Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558CrossRefGoogle Scholar
  5. Batjes NH (1995) A homogenized soil data file for global environmental research: a subset of FAO, ISRIC and NRCS profiles (version 1.0). Working Paper and preprint 95/10b, International Soil Reference and Information Centre, Wageningen. InGoogle Scholar
  6. Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163CrossRefGoogle Scholar
  7. Berhongaray G, Alvarez R, De Paepe J, Caride C, Cantet R (2013) Land use effects on soil carbon in the Argentine Pampas. Geoderma 192:97–110CrossRefGoogle Scholar
  8. Borchard N, Schirrmann M, Hebel Cv, Schimdt M, Baatz R, Firbank L, Vereecken H, Herbst M (2015) Spatio-temporal drivers of soil and ecosystem carbon fluxes at field scale in an upland grassland in Germany. Agric Ecosyst Environ 211:84 93Google Scholar
  9. Bouwman AF (1990) Soils and the greenhouse effect. Wiley. 596 pp.Google Scholar
  10. Bui E, Henderson B, Viergever K (2009) Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia. Glob Biogeochem Cycles 23(4)Google Scholar
  11. Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology, principles of terrestrial ecosystem ecology. Springer.  https://doi.org/10.1007/978-1-4419-9504-9
  12. Cowie AL, Orr BJ, Sanchez VMC, Chasek P, Crossman ND, Erlewein A, Louwagie G, Maron M, Metternicht GI, Minelli S, Tengberg AE (2018) Land in balance: the scientific conceptual framework for land degradation neutrality. Environ Sci Policy 79:25–35CrossRefGoogle Scholar
  13. Dalal RC, Mayer RJ (1986) Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland. III. Distribution and kinetics of soil organic carbon in particle size fractions. Aust J Soil Res 24:293–300CrossRefGoogle Scholar
  14. Deng L, Zhu G, Tang Z, Shangguan Z (2016) Global patterns of the effects of land-use changes on soil carbon stocks. Glob Ecol Conserv 5:127–138CrossRefGoogle Scholar
  15. Doetterl S, Stevens A, van Oost K, Quine TA, van Wesemael B (2013) Spatially-explicit regional-scale prediction of soil organic carbon stocks in cropland using environmental variables and mixed model approaches. Geoderma 204:31–42CrossRefGoogle Scholar
  16. Dokuchaev V (1879) Mapping the Russian soils. Imperial Univ. of St, PetersburgGoogle Scholar
  17. Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Chang Biol 17(4):1658–1670CrossRefGoogle Scholar
  18. Fick SE, Hijmans RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315CrossRefGoogle Scholar
  19. Galbraith D, Malhi Y, Affum-Baffoe K, Castanho ADA, Doughty CE, Fisher RA, Lewis SL, Peh KSH, Phillips OL, Quesada CA, Sonké B, Lloyd J (2013) Residence times of woody biomass in tropical forests. Plant Ecol Divers 6(1):139–157CrossRefGoogle Scholar
  20. Gilmanov TG, Soussana JF, Aires L, Allard V, Ammann C, Balzarolo M, Barcza Z, Bernhofer C, Campbell CL, Cernusca A, Cescatti A, Clifton-Brown J, Dirks BOM, Dore S, Eugster W, Fuhrer J, Gimeno C, Gruenwald T, Haszpra L, Hensen A, Ibrom A, Jacobs AFG, Jones MB, Lanigan G, Laurila T, Lohila A, Manca G, Marcolla B, Nagy Z, Pilegaard K, Pinter K, Pio C, Raschi A, Rogiers N, Sanz MJ, Stefani P, Sutton M, Tuba Z, Valentini R, Williams ML, Wohlfahrt G (2007) Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agric Ecosyst Environ 121:93–120CrossRefGoogle Scholar
  21. Grimm R, Behrens T, Marker M, Elsenbeer H (2008) Soil organic carbon concentrations and stocks on Barro Colorado Island—digital soil mapping using Random Forests analysis. Geoderma 146:102–113CrossRefGoogle Scholar
  22. Hartmann J, Moosdorf N (2012) The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem Geophys Geosyst 13:Q12004.  https://doi.org/10.1029/2012GC004370 CrossRefGoogle Scholar
  23. Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GBM, Ribeiro E, Samuel-Rosa A, Kempen B, Leenaars JGB, Walsh MG, Gonzalez MR (2014) SoilGrids1km —global soil information based on automated mapping. PLoS One 9(8):e105992.  https://doi.org/10.1371/journal.pone.0105992 CrossRefGoogle Scholar
  24. Hengl T, de Jesus JM, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B, Guevara MA, Vargas R, MacMillan RA, Batjes NH, Leenaars JGB, Ribeiro E, Wheeler I, Mantel S, Kempen B (2017) SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12(2):e0169748.  https://doi.org/10.1371/journal.pone.0169748 CrossRefGoogle Scholar
  25. Hiederer R, Köchy M (2011) Global soil organic carbon estimates and the Harmonized World Soil Database. EUR 25225 EN. Publications Office of the European Union. 79 pp.Google Scholar
  26. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978CrossRefGoogle Scholar
  27. Houghton RA (2014) The contemporary carbon cycle. In: Turekian HDHK (ed) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 399–435.  https://doi.org/10.1016/B978-0-08-095975-7.00810-X CrossRefGoogle Scholar
  28. Hounkpatin OKL, Op de Hipt F, Bossa AY, Welp G, Amelung W (2018) Soil organic carbon stocks and their determining factors in the Dano catchment (Soutwest Burkina Faso). Catena 166:298–309CrossRefGoogle Scholar
  29. Iwahashi J, Pike RJ (2007) Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 86(3):409–440CrossRefGoogle Scholar
  30. Jenny H (1941) Factors of soil formation: a system of quantitative pedology. Dover books on Earth sciences. Dover PublicationsGoogle Scholar
  31. Jobbagy E, Jackson R (2000) The vertical distribution of soil organic carbon and its relation to climate vegetation. Ecol Appl 10(2):423–436CrossRefGoogle Scholar
  32. Kögel-Knaber I, Amelung W (2014) Dynamics, chemistry, and preservation of organic matter in soils. Reference Module in Earth Systems and Environmental Sciences, from Treatise on Geochemistry. Geochemistry 12:157–215Google Scholar
  33. Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38(3):425–448CrossRefGoogle Scholar
  34. Ladd B, Peri PL (2013) REDD+ en Latinoamérica: el caso de Perú. Bosque 34(2):125–128CrossRefGoogle Scholar
  35. Ladd B, Bonser SP, Peri PL, Larsen JR, Laffan SW, Pepper DA, Cendón DI (2009) Towards a physical description of habitat: quantifying environmental adversity (abiotic stress) in temperate forest and woodland ecosystems. J Ecol 97:964–971CrossRefGoogle Scholar
  36. Ladd B, Laffan SW, Amelung W, Peri PL, Silva LCR, Gervassi P, Bonser SP, Navall M, Sheil D (2013) Estimates of soil carbon concentration in tropical and temperate forest and woodland from available GIS data on three continents. Glob Ecol Biogeogr 22(4):461–469CrossRefGoogle Scholar
  37. Ladd B, Peri PL, Pepper DA, Silva LCR, Sheil D, Bonser SP, Laffan SW, Amelung W, Ekblad A, Eliasson P, Bahamonde H, Duarte-Guardia S, Bird M (2014) Carbon isotopic signatures of soil organic matter correlate with leaf area index across woody biomes. J Ecol 102(6):1606–1611CrossRefGoogle Scholar
  38. Ladd B, Dumler S, Loret de Mola E, Anaya de la Rosa R, Borchard N (2018) Incremento de rentabilidad en producción del maíz en perú: N-fertilizantes y biochar. Biologist (Lima) 15:23–35Google Scholar
  39. Laganiere J, Angers DA, Pare D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Chang Biol 16:439–453CrossRefGoogle Scholar
  40. Lal R (2004a) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22CrossRefGoogle Scholar
  41. Lal R (2004b) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627CrossRefGoogle Scholar
  42. Lal R (2013) Soil carbon management and climate change. Carbon Manag 4(4):439–462CrossRefGoogle Scholar
  43. Lal R (2016) Beyond COP21: potential and challenges of the “4 per thousand” initiative. J Soil Water Conserv 71:20A–25ACrossRefGoogle Scholar
  44. Lam SK, Chen D, Mosier AR, Roush R (2013) The potential for carbon sequestration in Australian agricultural soils is technically and economically limited. Sci Rep 3:2179CrossRefGoogle Scholar
  45. Lützow MV, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445CrossRefGoogle Scholar
  46. Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trees 15:332–337Google Scholar
  47. Manning P, Vries FT, Tallowin JR, Smith R, Mortimer SR, Pilgrim ES, Harrison KA, Wright DG, Quirk H, Benson J (2015) Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks. J Appl Ecol 52(5):1188–1196CrossRefGoogle Scholar
  48. Maxwell TM, Silva LCR, Horwath WR (2018) Integrating effects of species composition and soil properties to predict shifts in montane forests carbon-water relations. PNAS 1718864115Google Scholar
  49. Meybeck M, Green P, Vörösmarty C (2001) A new typology for mountains and other relief classes: an application to global continental water resources and population distribution. Mt Res Dev 21(1):34–45CrossRefGoogle Scholar
  50. Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen Z, Cheng K, Das BS, Field D, Gimona A, Hedly CB, Hong SY, Mandal B, Marchant BP, Martin M, McConkey BG, Mulder VL, O'Rourke S, Richer-de-Forges AC, Odeh I, Padarian J, Paustian K, Pan G, Poggio L, Savin I, Stolbovoy V, van Wesemael B, Winowiecki L (2017) Soil carbon 4 per mille. Geoderma 292:59–86CrossRefGoogle Scholar
  51. Mulder VL, de Bruin S, Schaepman ME, Mayr TR (2011) The use of remote sensing in soil terrain mapping—a review. Geoderma 162:1–19CrossRefGoogle Scholar
  52. Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002) Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419:915–917CrossRefGoogle Scholar
  53. Peri PL, Ladd B, Pepper DA, Bonser SP, Laffan SW, Amelung W (2012) Carbon (δ13C) and nitrogen (δ15N) stable isotope composition in plant and soil in Southern Patagonia’s native forests. Glob Chang Biol 18:311–321Google Scholar
  54. Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–328CrossRefGoogle Scholar
  55. Poulton P, Johnston J, Macdonald A, White R, Powlson D (2017) Major limitations to achieving “4 per 1000” increase in soil organic carbon stock in temperate regions: evidence from long-term experiments at Rothamsted Research, United Kingdom. Glob Chang Biol 2018:1–22Google Scholar
  56. Powers JS, Corre MD, Twine TE, Veldkamp E (2011) Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc Natl Acad Sci 108(15):6318–6322CrossRefGoogle Scholar
  57. Preger AC, Kösters R, Du Preez CC, Brodowski S, Amelung W (2010) Carbon sequestration in secondary pasture soils: a chronosequence study in the South African Highveld. Eur J Soil Sci 61:551–562CrossRefGoogle Scholar
  58. Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) Special paper: a global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134CrossRefGoogle Scholar
  59. Quinn GP, Keough MJ (2002) Experimental design and data analysis for Biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  60. Rabbi SMF, Tighe M, Delgado-Baquerizo M, Cowie A, Robertson F, Dalal R, Page K, Crawford D, Wilson BR, Schwenke G, McLeod M, Badgery W, Dang YP, Bell M, O’Leary G, Liu DL, Baldock J (2015) Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia. Sci Rep 5:17866CrossRefGoogle Scholar
  61. Robles MD, Burke IC (1998) Soil organic matter recovery on conservation reserve program fields in southeastern Wyoming. Soil Sci Soc Am J 62:725–730CrossRefGoogle Scholar
  62. Roman-Sanchez A, Vanwalleghm T, Peña A, Giráldez JV (2018) Controls on soil carbon storage from topography and vegetation in a rocky, semi-arid landscapes. Geoderma 311:159–166CrossRefGoogle Scholar
  63. Ryan CM, Hill T, Woollen E, Ghee C, Mitchard E, Cassells G, Grace J, Woodhouse IH, Williams M (2012) Quantifying small-scale deforestation and forest degradation in African woodlands using radar imagery. Glob Chang Biol 18(1):243–257CrossRefGoogle Scholar
  64. Sala OE, Parton WJ, Joyce LA, Lauenroth W (1988) Primary production of the central grassland region of the United States. Ecology 69:40–45CrossRefGoogle Scholar
  65. Sanderman J, Farquharson R, Baldock J (2010) Soil carbon sequestration potential: a review for Australian agriculture. A report prepared for Department of Climate Change and Energy Efficiency CSIRO: EP10121Google Scholar
  66. Sanderman J, Hengl T, Fiske GJ (2017) Soil carbon debt of 12,000 years of human land use. PNAS 114:9575–9580CrossRefGoogle Scholar
  67. Scharlemann JP, Tanner EV, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5(1):81–91CrossRefGoogle Scholar
  68. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knaber I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56CrossRefGoogle Scholar
  69. Sheil D, Ladd B, Silva LCR, Laffan SW, Van Heist M (2016) How are soil carbon and tropical biodiversity related? Environ Conserv 43:231–241CrossRefGoogle Scholar
  70. Silva LCR (2017) Carbon sequestration beyond tree longevity. Science 355:1141CrossRefGoogle Scholar
  71. Silva LCR, Sternberg LSL, Haridasan M, Hoffmann WA, Miralles-Wilhelm F, Franco AC (2008) Expansion of gallery forests into central Brazilian savannas. Glob Chang Biol 14:2108–2118CrossRefGoogle Scholar
  72. Silva LCR, Corrêa RS, Doane TA, Pereira EI, Horwath WR (2013) Unprecedented carbon accumulation in mined soils: the synergistic effect of resource input and plant species invasion. Ecol Appl 23:1345–1356CrossRefGoogle Scholar
  73. Silva LCR, Doane TA, Corrêa RS, Valverde V, Pereira EI, Horwath WR (2015) Iron-mediated stabilization of soil carbon amplifies the benefits of ecological restoration in degraded lands. Ecol Appl 5:1226–1234CrossRefGoogle Scholar
  74. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O'Mara F, Rice C (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond B Biol Sci 363(1492):789–813CrossRefGoogle Scholar
  75. Soil Survey Staff (2011) Soil Survey Laboratory Information Manual. Soil Survey Investigations Report No. 45, Version 2.0. In: R. Burt (ed). U.S. Department of Agriculture, Natural Resources Conservation ServiceGoogle Scholar
  76. Solomon D, Lehmann J, Kinyangi J, Amelung W, Lobe I, Ngoze S, Riha S, Pell A, Verchot LL, Mbugua D, Skjemstad J, Schäfer T (2007) Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. Glob Chang Biol 13:511–530CrossRefGoogle Scholar
  77. Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, de Courcelles VDR, Singh K (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99CrossRefGoogle Scholar
  78. Trabucco A, Zomer R (2009) Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consortium for Spatial Information. Published online, available from the CGIAR-CSI GeoPortal at: http://www.csi.cgiar.org/(2009). Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial Database. In CGIAR Consortium for Spatial Information
  79. Trabucco A, Zomer R (2010) Global soil water balance geospatial database. CGIAR Consortium for Spatial Information. Published online, available from the CGIAR-CSI GeoPortal at: http://www.cgiar-csi.org
  80. UN-REDD (2016) Technical resource series 3: towards a common understanding of REDD+ under the UNFCCC. UN-REDD Programme SecretariattGoogle Scholar
  81. Wiesmeier M, Barthold F, Spörlein P, Geuß U, Hangen E, Reischl A, Schilling B, Angst G, Mv L, Kögel-Knabner I (2014) Estimation of total organic carbon storage and its driving factors in soils of Bavaria (southeast Germany). Geoderma Reg 1:67–78CrossRefGoogle Scholar
  82. Winsome T, Silva LCR, Scow CR, Doane TA, Power RF, Howarth WR (2017) Plant-microbe interactions regulate carbon and nitrogen accumulation in forest soils. For Ecol Manag 384:415–423CrossRefGoogle Scholar
  83. Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Sandra Duarte-Guardia
    • 1
  • Pablo L. Peri
    • 2
  • Wulf Amelung
    • 3
  • Douglas Sheil
    • 4
    • 5
  • Shawn W. Laffan
    • 6
  • Nils Borchard
    • 7
    • 8
    • 9
    • 10
  • Michael I. Bird
    • 11
  • Wouter Dieleman
    • 11
  • David A. Pepper
    • 6
    • 12
  • Brian Zutta
    • 13
  • Esteban Jobbagy
    • 14
  • Lucas C. R. Silva
    • 15
  • Stephen P. Bonser
    • 16
  • Gonzalo Berhongaray
    • 17
  • Gervasio Piñeiro
    • 18
    • 19
  • Maria-Jose Martinez
    • 20
  • Annette L. Cowie
    • 21
    • 22
  • Brenton Ladd
    • 16
    • 20
  1. 1.Universidad Nacional de la Patagonia Austral (UNPA)Santa CruzArgentina
  2. 2.INTA EEA Santa Cruz, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-cc332Santa CruzArgentina
  3. 3.Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil EcologyUniversity of BonnBonnGermany
  4. 4.Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
  5. 5.Center for International Forestry Research (CIFOR)Jalan Cifor RawajahaKota BogorIndonesia
  6. 6.School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia
  7. 7.Agrosphere Institute (IBG-3)Forschungszentrum Jülich GmbHJülichGermany
  8. 8.Center for International Forestry Research (CIFOR)Jalan CIFORBogorIndonesia
  9. 9.Ruhr-University Bochum, Institute of Geography, Soil Science/Soil EcologyBochumGermany
  10. 10.Plant ProductionNatural Resources Institute Finland (Luke)HelsinkiFinland
  11. 11.College of Science, Technology and Engineering and Centre for Tropical Environmental and Sustainability ScienceJames Cook UniversityCairnsAustralia
  12. 12.Institute for Applied EcologyUniversity of CanberraCanberra ACTAustralia
  13. 13.Programa Nacional de Conservación de Bosques, Ministerio del Ambiente (National Forest Conservation Program, Ministry of the Environment)LimaPeru
  14. 14.Grupo de Estudios Ambientales, IMASLUniversidad Nacional de San Luis y CONICETSan LuisArgentina
  15. 15.Environmental Studies Program, Department of Geography, Institute of Ecology & EvolutionUniversity of OregonEugeneUSA
  16. 16.Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia
  17. 17.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Facultad de Ciencias AgrariasUniversidad Nacional del LitoralEsperanzaArgentina
  18. 18.IFEVA, Facultad de Agronomía, CONICET, Laboratorio de Análisis Regional y Teledetección (LART-FAUBA)Universidad de Buenos AiresBuenos AiresArgentina
  19. 19.Facultad de AgronomiaUniversidad de la RepublicaMontevideoUruguay
  20. 20.Escuela de AgroforesteríaUniversidad Científica del SurLimaPeru
  21. 21.NSW Department of Primary IndustriesArmidaleAustralia
  22. 22.School of Environmental and Rural ScienceUniversity of New EnglandArmidaleAustralia

Personalised recommendations