Skip to main content

Advertisement

Log in

Optimize emission reduction commitments for international environmental agreements

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

In order to restrict global warming to no more than 2 C, more efforts are needed. Thus, how to attract as more as possible countries to international environment agreements (IEAs) and realize the maximum reduction targets are meaningful. The motivation of this paper is exploring a set of method of designing IEA proposals. The paper built a chance-constrained two-stage cartel formation game model, which can explore whether a country signs an agreement in the first stage and discusses how the countries joining the coalition can make the best emission commitments in the second stage. Based on the model, the real emission data of 45 countries was collected for numerical experiments, which almost completely depict the current global emissions of different countries. A numerical experiment has also been carried out in the paper. Then some interesting results emerge as follows: risk averse, high cost, high emission reduction duty, and external stability impede large coalition formation; transfer scheme and high perceived benefits stimulate countries to join IEAs and make a good commitment; the most influential countries for coalition structure and commitment are those low-cost and low-emission entities. The results also demonstrate that the design of IEA proposals should not only pay attention to those economically developed and high-emission “big” countries, but also attach importance to those low-emission “small” countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Acuto M (2013) The new climate leaders? Rev Int Stud 39(4):835–857

    Article  Google Scholar 

  • Alston M (2015) Social work, climate change and global cooperation. Int Soc Work 58(3):355–363

    Article  Google Scholar 

  • Barrett S (1994) The biodiversity supergame. Environ Resour Econ 4(1):111–122

    Article  Google Scholar 

  • Bollino C A, Micheli S (2014) Cooperation and free riding in EU environmental agreements. Int Adv Econ Res 20(2):247–248

    Article  Google Scholar 

  • Chander P, Tulkens H (1997) The core of an economy with multilateral environmental externalities. International Journal of Game Theory 26(3):379–401

    Article  Google Scholar 

  • Chou P B, Sylla C (2008) The formation of an international environmental agreement as a two-stage exclusive cartel formation game with transferable utilities. Int Environ Agreements 8(4):317–341

    Article  Google Scholar 

  • d’Aspremont C, Jacquemin A, Gabszewicz J J et al (1983) On the stability of collusive price leadership. Can J Econ 16(1):17–25

    Article  Google Scholar 

  • Eyckmans J, Finus M (2006) Coalition formation in a global warming game: how the design of protocols affects the success of environmental treaty-making. Nutural Resource Modeling 19(3):323–358

    Article  Google Scholar 

  • Eyckmans J, Finus M (2009) An almost ideal sharing scheme for coalition games with externalities. Stirling Discussion Paper Series 2009–10. University of Stirling

  • Finus M, Ierland E V, Dellink R (2006) Stability of climate coalitions in a cartel formation game. Econ Gov 7(3):271–291

    Article  Google Scholar 

  • Finus M, Pintassilgo P (2013) The role of uncertainty and learning for the success of international climate agreements. J Public Econ 103:29–43

    Article  Google Scholar 

  • Finus M, Rbbelke D T G (2013) Public good provision and ancillary benefits: the case of climate agreements. Environ Resour Econ 56(2):211–226

    Article  Google Scholar 

  • Hoel M (1992) International environment conventions: the case of uniform reductions of emissions. Environ Resour Econ 2(2):141–159

    Google Scholar 

  • Hoel M, Schneider K (1997) Incentives to participate in an international environmental agreement. Environ Resour Econ 9(2):153–170

    Google Scholar 

  • Kolstada KD (2007) Systematic uncertainty in self-enforcing international environmental agreements. J Environ Econ Manag 53(1):68–79

    Article  Google Scholar 

  • Kolstad C, Ulph A (2008) Learning and international environmental agreements. Clim Chang 89(1–2):125–141

    Article  Google Scholar 

  • Kolstad CD, Ulph A (2011) Uncertainty, learning and heterogeneity in international environmental agreements. Environ Resour Econ 50(3):389–403

    Article  Google Scholar 

  • Kunreuther H, Heal G, Allen M et al (2013) Risk management and climate change. Nat Clim Chang 3(5):447–450

    Article  Google Scholar 

  • McEvoy D M (2013) Enforcing compliance with international environmental agreements using a deposit-refund system. Int Environ Agreements 13(4):481–496

    Article  Google Scholar 

  • McGinty M, Milam G, Gelves A (2012) Coalition stability in public goods provision: testing an optimal allocation rule. Environ Resour Econ 52(3):327–345

    Article  Google Scholar 

  • Petrakis E, Xepapadeas A (1996) Environmental consciousness and moral hazard in international agreements to protect the environment. J Public Econ 60(1):95–110

    Article  Google Scholar 

  • Per-Anders E, Tomas N, Jerker R (2007) A cost curve for greenhouse gas reduction. McKinsey Quarterly 1(6):48–51

    Google Scholar 

  • Rubio S J, Ulph A (2006) Self-enforcing international environmental agreements revisited. Oxf Econ Pap 58(2):233

    Article  Google Scholar 

  • Shapiro A (2008) Stochastic programming approach to optimization under uncertainty. Math Program 112(1):183–220

    Article  Google Scholar 

  • Tingley D, Tomz M (2014) Conditional cooperation and climate change. Comparative Political Studies 47(3):344–268

    Article  Google Scholar 

  • Victor D G (2006) Toward effective international cooperation on climate change: numbers, interests and institutions. Global Environmental Politics 6(3):90–103

    Article  Google Scholar 

  • Yun SJ, Ku DW, Han JY (2014) Climate policy networks in South Korea: alliances and conflicts. Climate Policy (Earthscan) 14(2):283–301

    Article  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (71373173), the National Social Science Foundation of China (2014B1-0130), and the Doctoral Fund of Ministry of Education of China (2014D0-0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjuan Zang.

Appendix

Appendix

  1. 1.

    The difference of payoff between a country being a signatory or not.

Using equilibrium abatement payoffs in Eqs. 5 and 7 gives the following payoffs:

  1. (1)

    If country i is a member of coalition C, then the payoff when i leaves the coalition is

    $$ \begin{array}{lll} \widetilde{\pi}^{*}_{i}(C\setminus\{i\})&=&\gamma_{i}\left[\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}-{\lambda_{i}^{2}}\right) *\left( \sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}-\gamma_{i}\right)\right.\\ &&\left.+\sum\limits_{k = 1}^{n}(1-x_{k}){\lambda_{k}^{2}}\gamma_{k} +{\lambda_{i}^{2}}\gamma_{i}\right] -\frac{1}{2}(\lambda_{i}\gamma_{i})^{2}\\ &=&\gamma_{i}\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar} -{\lambda_{i}^{2}}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}-\gamma_{i}\sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\right.\\ &&\left.+{\lambda_{i}^{2}}\gamma_{i}+\sum\limits_{k = 1}^{n}(1-x_{k}){\lambda_{k}^{2}}\gamma_{k}+{\lambda_{i}^{2}}\gamma_{i}\right)-\frac{1}{2}(\lambda_{i}\gamma_{i})^{2}\\ &=&\gamma_{i}\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}+\sum\limits_{k = 1}^{n}(1-x_{k}){\lambda_{k}^{2}}\gamma_{k}\right)\\ &&-{\lambda_{i}^{2}}\gamma_{i}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}-{\gamma_{i}^{2}}\sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}+\frac{3}{2}(\lambda_{i}\gamma_{i})^{2}, \forall i\in C. \end{array} $$
    (31)

    Putting Eq. (5) into Eq. (31), we have

    $$ \begin{array}{lll} \widetilde{\pi}^{*}_{i}(C\setminus\{i\})&\,=\,&\widetilde{\pi}^{*}_{i}(C) +\frac{1}{2}{\lambda_{i}^{2}}\left( \sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}\right)^{2} \,-\,{\lambda_{i}^{2}}\gamma_{i}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar} \,-\,{\gamma_{i}^{2}}\sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\,+\,\frac{3}{2}(\lambda_{i}\gamma_{i})^{2}\\ &\,=\,&\widetilde{\pi}^{*}_{i}(C)+\frac{1}{2}{\lambda_{i}^{2}}\left( \sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}\,-\,\gamma_{i}\right)^{2}\,-\,{\gamma_{i}^{2}}\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}-{\lambda_{i}^{2}}\right), \end{array} $$
    (32)

    which equals to

    $$ \widetilde{\pi}^{*}_{i}(C)-\widetilde{\pi}^{*}_{i}(C\setminus\{i\})={\gamma_{i}^{2}}\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}-{\lambda_{i}^{2}}\right) -\frac{1}{2}{\lambda_{i}^{2}}\left( \sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}-\gamma_{i}\right)^{2}, \forall i\in C. $$
    (33)
  2. (2)

    If country j is not a member of coalition C, then the payoff when j joins the coalition is

    $$ \begin{array}{lll} \widetilde{\pi}^{*}_{j}(C\cup \{j\})&=&\gamma_{j}\left[\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}+{\lambda_{j}^{2}}\right) *\left( \sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}+\gamma_{j}\right)\right.\\ &&\left.+\sum\limits_{k = 1}^{n}(1-x_{k}){\lambda_{k}^{2}}\gamma_{k} -{\lambda_{j}^{2}}\gamma_{j}\right] -\frac{1}{2}{\lambda_{j}^{2}}\left( \sum\limits_{\hbar= 1}^{n} x_{\hbar}\gamma_{\hbar}+\gamma_{j}\right)^{2}\\ &=&\gamma_{j}\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar} +{\lambda_{j}^{2}}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}+\gamma_{j}\sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\right.\\ &&\left.+{\lambda_{j}^{2}}\gamma_{j}+\sum\limits_{k = 1}^{n}(1-x_{k}){\lambda_{k}^{2}}\gamma_{k}-{\lambda_{j}^{2}}\gamma_{j}\right)-\frac{1}{2}{\lambda_{j}^{2}}\left( \sum\limits_{\hbar= 1}^{n} x_{\hbar}\gamma_{\hbar}+\gamma_{j}\right)^{2}\\ &=&\gamma_{j}\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}+\sum\limits_{k = 1}^{n}(1-x_{k}){\lambda_{k}^{2}}\gamma_{k}\right)\\ &&+{\lambda_{j}^{2}}\gamma_{j}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}+{\gamma_{j}^{2}}\sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}-\frac{1}{2}{\lambda_{j}^{2}}\left( \sum\limits_{\hbar= 1}^{n} x_{\hbar}\gamma_{\hbar}+\gamma_{j}\right)^{2}, \forall j\not\in C. \end{array} $$
    (34)

    Inserting Eq. (7) into Eq. (34), we obtain

    $$ \begin{array}{lll} \widetilde{\pi}^{*}_{j}(C\cup\{j\})&=&\widetilde{\pi}^{*}_{j}(C) +\frac{1}{2}(\lambda_{j}\gamma_{j})^{2} +{\lambda_{j}^{2}}\gamma_{j}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}+{\gamma_{j}^{2}}\sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\\ &&-\frac{1}{2}{\lambda_{j}^{2}}\left( \sum\limits_{\hbar= 1}^{n} x_{\hbar}\gamma_{\hbar}+\gamma_{j}\right)^{2}\\ &=&\widetilde{\pi}^{*}_{j}(C)+{\gamma_{j}^{2}}(\sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2})-\frac{1}{2}{\lambda_{j}^{2}}(\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar})^{2}, \end{array} $$
    (35)

    which equals to

    $$ \widetilde{\pi}^{*}_{j}(C)-\widetilde{\pi}^{*}_{j}(C\cup\{j\})= \frac{1}{2}{\lambda_{j}^{2}}\left( \sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}\right)^{2}-{\gamma_{j}^{2}}\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\right), \forall j\not\in C. $$
    (36)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zang, W., Fan, W. et al. Optimize emission reduction commitments for international environmental agreements. Mitig Adapt Strateg Glob Change 23, 1367–1389 (2018). https://doi.org/10.1007/s11027-018-9788-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-018-9788-x

Keywords