Abstract
In order to restrict global warming to no more than 2 ∘C, more efforts are needed. Thus, how to attract as more as possible countries to international environment agreements (IEAs) and realize the maximum reduction targets are meaningful. The motivation of this paper is exploring a set of method of designing IEA proposals. The paper built a chance-constrained two-stage cartel formation game model, which can explore whether a country signs an agreement in the first stage and discusses how the countries joining the coalition can make the best emission commitments in the second stage. Based on the model, the real emission data of 45 countries was collected for numerical experiments, which almost completely depict the current global emissions of different countries. A numerical experiment has also been carried out in the paper. Then some interesting results emerge as follows: risk averse, high cost, high emission reduction duty, and external stability impede large coalition formation; transfer scheme and high perceived benefits stimulate countries to join IEAs and make a good commitment; the most influential countries for coalition structure and commitment are those low-cost and low-emission entities. The results also demonstrate that the design of IEA proposals should not only pay attention to those economically developed and high-emission “big” countries, but also attach importance to those low-emission “small” countries.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Acuto M (2013) The new climate leaders? Rev Int Stud 39(4):835–857
Alston M (2015) Social work, climate change and global cooperation. Int Soc Work 58(3):355–363
Barrett S (1994) The biodiversity supergame. Environ Resour Econ 4(1):111–122
Bollino C A, Micheli S (2014) Cooperation and free riding in EU environmental agreements. Int Adv Econ Res 20(2):247–248
Chander P, Tulkens H (1997) The core of an economy with multilateral environmental externalities. International Journal of Game Theory 26(3):379–401
Chou P B, Sylla C (2008) The formation of an international environmental agreement as a two-stage exclusive cartel formation game with transferable utilities. Int Environ Agreements 8(4):317–341
d’Aspremont C, Jacquemin A, Gabszewicz J J et al (1983) On the stability of collusive price leadership. Can J Econ 16(1):17–25
Eyckmans J, Finus M (2006) Coalition formation in a global warming game: how the design of protocols affects the success of environmental treaty-making. Nutural Resource Modeling 19(3):323–358
Eyckmans J, Finus M (2009) An almost ideal sharing scheme for coalition games with externalities. Stirling Discussion Paper Series 2009–10. University of Stirling
Finus M, Ierland E V, Dellink R (2006) Stability of climate coalitions in a cartel formation game. Econ Gov 7(3):271–291
Finus M, Pintassilgo P (2013) The role of uncertainty and learning for the success of international climate agreements. J Public Econ 103:29–43
Finus M, Rbbelke D T G (2013) Public good provision and ancillary benefits: the case of climate agreements. Environ Resour Econ 56(2):211–226
Hoel M (1992) International environment conventions: the case of uniform reductions of emissions. Environ Resour Econ 2(2):141–159
Hoel M, Schneider K (1997) Incentives to participate in an international environmental agreement. Environ Resour Econ 9(2):153–170
Kolstada KD (2007) Systematic uncertainty in self-enforcing international environmental agreements. J Environ Econ Manag 53(1):68–79
Kolstad C, Ulph A (2008) Learning and international environmental agreements. Clim Chang 89(1–2):125–141
Kolstad CD, Ulph A (2011) Uncertainty, learning and heterogeneity in international environmental agreements. Environ Resour Econ 50(3):389–403
Kunreuther H, Heal G, Allen M et al (2013) Risk management and climate change. Nat Clim Chang 3(5):447–450
McEvoy D M (2013) Enforcing compliance with international environmental agreements using a deposit-refund system. Int Environ Agreements 13(4):481–496
McGinty M, Milam G, Gelves A (2012) Coalition stability in public goods provision: testing an optimal allocation rule. Environ Resour Econ 52(3):327–345
Petrakis E, Xepapadeas A (1996) Environmental consciousness and moral hazard in international agreements to protect the environment. J Public Econ 60(1):95–110
Per-Anders E, Tomas N, Jerker R (2007) A cost curve for greenhouse gas reduction. McKinsey Quarterly 1(6):48–51
Rubio S J, Ulph A (2006) Self-enforcing international environmental agreements revisited. Oxf Econ Pap 58(2):233
Shapiro A (2008) Stochastic programming approach to optimization under uncertainty. Math Program 112(1):183–220
Tingley D, Tomz M (2014) Conditional cooperation and climate change. Comparative Political Studies 47(3):344–268
Victor D G (2006) Toward effective international cooperation on climate change: numbers, interests and institutions. Global Environmental Politics 6(3):90–103
Yun SJ, Ku DW, Han JY (2014) Climate policy networks in South Korea: alliances and conflicts. Climate Policy (Earthscan) 14(2):283–301
Funding
This research is supported by the National Natural Science Foundation of China (71373173), the National Social Science Foundation of China (2014B1-0130), and the Doctoral Fund of Ministry of Education of China (2014D0-0024).
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
-
1.
The difference of payoff between a country being a signatory or not.
Using equilibrium abatement payoffs in Eqs. 5 and 7 gives the following payoffs:
-
(1)
If country i is a member of coalition C, then the payoff when i leaves the coalition is
$$ \begin{array}{lll} \widetilde{\pi}^{*}_{i}(C\setminus\{i\})&=&\gamma_{i}\left[\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}-{\lambda_{i}^{2}}\right) *\left( \sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}-\gamma_{i}\right)\right.\\ &&\left.+\sum\limits_{k = 1}^{n}(1-x_{k}){\lambda_{k}^{2}}\gamma_{k} +{\lambda_{i}^{2}}\gamma_{i}\right] -\frac{1}{2}(\lambda_{i}\gamma_{i})^{2}\\ &=&\gamma_{i}\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar} -{\lambda_{i}^{2}}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}-\gamma_{i}\sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\right.\\ &&\left.+{\lambda_{i}^{2}}\gamma_{i}+\sum\limits_{k = 1}^{n}(1-x_{k}){\lambda_{k}^{2}}\gamma_{k}+{\lambda_{i}^{2}}\gamma_{i}\right)-\frac{1}{2}(\lambda_{i}\gamma_{i})^{2}\\ &=&\gamma_{i}\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}+\sum\limits_{k = 1}^{n}(1-x_{k}){\lambda_{k}^{2}}\gamma_{k}\right)\\ &&-{\lambda_{i}^{2}}\gamma_{i}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}-{\gamma_{i}^{2}}\sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}+\frac{3}{2}(\lambda_{i}\gamma_{i})^{2}, \forall i\in C. \end{array} $$(31)Putting Eq. (5) into Eq. (31), we have
$$ \begin{array}{lll} \widetilde{\pi}^{*}_{i}(C\setminus\{i\})&\,=\,&\widetilde{\pi}^{*}_{i}(C) +\frac{1}{2}{\lambda_{i}^{2}}\left( \sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}\right)^{2} \,-\,{\lambda_{i}^{2}}\gamma_{i}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar} \,-\,{\gamma_{i}^{2}}\sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\,+\,\frac{3}{2}(\lambda_{i}\gamma_{i})^{2}\\ &\,=\,&\widetilde{\pi}^{*}_{i}(C)+\frac{1}{2}{\lambda_{i}^{2}}\left( \sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}\,-\,\gamma_{i}\right)^{2}\,-\,{\gamma_{i}^{2}}\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}-{\lambda_{i}^{2}}\right), \end{array} $$(32)which equals to
$$ \widetilde{\pi}^{*}_{i}(C)-\widetilde{\pi}^{*}_{i}(C\setminus\{i\})={\gamma_{i}^{2}}\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}-{\lambda_{i}^{2}}\right) -\frac{1}{2}{\lambda_{i}^{2}}\left( \sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}-\gamma_{i}\right)^{2}, \forall i\in C. $$(33) -
(2)
If country j is not a member of coalition C, then the payoff when j joins the coalition is
$$ \begin{array}{lll} \widetilde{\pi}^{*}_{j}(C\cup \{j\})&=&\gamma_{j}\left[\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}+{\lambda_{j}^{2}}\right) *\left( \sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}+\gamma_{j}\right)\right.\\ &&\left.+\sum\limits_{k = 1}^{n}(1-x_{k}){\lambda_{k}^{2}}\gamma_{k} -{\lambda_{j}^{2}}\gamma_{j}\right] -\frac{1}{2}{\lambda_{j}^{2}}\left( \sum\limits_{\hbar= 1}^{n} x_{\hbar}\gamma_{\hbar}+\gamma_{j}\right)^{2}\\ &=&\gamma_{j}\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar} +{\lambda_{j}^{2}}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}+\gamma_{j}\sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\right.\\ &&\left.+{\lambda_{j}^{2}}\gamma_{j}+\sum\limits_{k = 1}^{n}(1-x_{k}){\lambda_{k}^{2}}\gamma_{k}-{\lambda_{j}^{2}}\gamma_{j}\right)-\frac{1}{2}{\lambda_{j}^{2}}\left( \sum\limits_{\hbar= 1}^{n} x_{\hbar}\gamma_{\hbar}+\gamma_{j}\right)^{2}\\ &=&\gamma_{j}\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}+\sum\limits_{k = 1}^{n}(1-x_{k}){\lambda_{k}^{2}}\gamma_{k}\right)\\ &&+{\lambda_{j}^{2}}\gamma_{j}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}+{\gamma_{j}^{2}}\sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}-\frac{1}{2}{\lambda_{j}^{2}}\left( \sum\limits_{\hbar= 1}^{n} x_{\hbar}\gamma_{\hbar}+\gamma_{j}\right)^{2}, \forall j\not\in C. \end{array} $$(34)Inserting Eq. (7) into Eq. (34), we obtain
$$ \begin{array}{lll} \widetilde{\pi}^{*}_{j}(C\cup\{j\})&=&\widetilde{\pi}^{*}_{j}(C) +\frac{1}{2}(\lambda_{j}\gamma_{j})^{2} +{\lambda_{j}^{2}}\gamma_{j}\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}+{\gamma_{j}^{2}}\sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\\ &&-\frac{1}{2}{\lambda_{j}^{2}}\left( \sum\limits_{\hbar= 1}^{n} x_{\hbar}\gamma_{\hbar}+\gamma_{j}\right)^{2}\\ &=&\widetilde{\pi}^{*}_{j}(C)+{\gamma_{j}^{2}}(\sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2})-\frac{1}{2}{\lambda_{j}^{2}}(\sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar})^{2}, \end{array} $$(35)which equals to
$$ \widetilde{\pi}^{*}_{j}(C)-\widetilde{\pi}^{*}_{j}(C\cup\{j\})= \frac{1}{2}{\lambda_{j}^{2}}\left( \sum\limits_{\hbar= 1}^{n}x_{\hbar}\gamma_{\hbar}\right)^{2}-{\gamma_{j}^{2}}\left( \sum\limits_{\ell= 1}^{n}x_{\ell}\lambda_{\ell}^{2}\right), \forall j\not\in C. $$(36)
Rights and permissions
About this article
Cite this article
Chen, W., Zang, W., Fan, W. et al. Optimize emission reduction commitments for international environmental agreements. Mitig Adapt Strateg Glob Change 23, 1367–1389 (2018). https://doi.org/10.1007/s11027-018-9788-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11027-018-9788-x


